Highly Conjugated Ergostane-Type Steroids and Aranotin-Type Diketopiperazines from the Fungus Aspergillus terreus BCC 4651

by Rachada Haritakun, Pranee Rachtawee, Somjit Komwijit, Sutichai Nithithanasilp, and Masahiko Isaka*

National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand (phone: $+66-25646700$ ext 3554; fax: $+66-25646707$; e-mail: isaka@biotec.or.th)

Two new ergostane derivatives, $12\beta,15\alpha,25.26$ -tetrahydroxyergosta-4,6,8(14),22-tetraen-3-one (1) and 12β ,15 α ,25,28-tetrahydroxyergosta-4,6,8(14),22-tetraen-3-one (2), and a new aranotin-type diketopiperazine, bisdethiobis(methylsulfanyl)apoaranotin (3), were isolated from the fungus Aspergillus terreus BCC 4651. The structures of the new compounds were elucidated by means of NMR spectroscopic and MS analyses.

Introduction. – The filamentous fungus Aspergillus terreus is a prolific producer of biologically active secondary metabolites such as terreic acid [1] [2], terrain [2], citrinin [3], lovastatin [4], gliotoxin [5], acetylaranotin [6], and butyrolactone I [7] and its derivatives [8] [9]. As part of our research program on the utilization of fungal sources in Thailand, we recently investigated the *Aspergillus terreus* strain BCC 4651, which led to the isolation of butyrolactone I and its derivatives, including two new butenolides, butyrolactones VI and VII, together with the common metabolites of A. terreus, bisdethiobis(methylsulfanyl)acetylaranotin and terrain [10]. Since this fungal strain proved to be a unique source of secondary metabolites, it has been further chemically explored under different fermentation conditions. Herein, we report the isolation and structure elucidation of two new steroids, 1 and 2, and a new diketopiperazine, bisdethiobis(methylsulfanyl)apoaranotin (3), along with the three known compounds bisdethiobis(methylsulfanyl)acetylapoaranotin (4) [11], bisdethiobis(methylsulfanyl) aranotin $(5,$ alternarosin A) [12], and bisdethiobis(methylsulfanyl)acetylaranotin (6) $[13-15]$, which were produced by extending the duration of incubation $(42 d)$.

Results and Discussion. – Compound 1 was isolated as a pale yellow solid, and the molecular formula was determined as $C_{28}H_{40}O_5$, from the sodiated *quasi*-molecular ion peak at *m/z* 479.2769 (calc. for $C_{28}H_{40}NaO₅$, 479.2773) in the HR-ESI-MS. The IR spectrum showed broad and intense absorption bands at \tilde{v}_{max} 3372 (broad) and 1640 cm-1 . The ¹ H- and 13C-NMR, DEPT-135, and HMQC data for 1 revealed the presence of a conjugated ketone (δ (C) 197.4), three olefinic quaternary C-atoms, five olefinic CH groups, an O-bearing quaternary C-atom, two HO–CH groups, a HO–CH2 group, two sp³ quaternary C-atoms, four CH groups, four CH₂ groups, and five Me groups. The tetracyclic skeleton with a highly conjugated trienone and the ergostanetype side chain were deduced by analyses of COSY and HMBC data (Table 1). The

^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

location of the C=O group was indicated by the HMBCs from ${\rm H}_\beta$ –C(1), ${\rm H}_a$ –C(2), and $H_{\beta}-C(2)$ to C(3) (δ (C) 197.4), while the olefinic H-C(4) (δ (H) 5.65 (s)) exhibited correlations to $C(2)$, $C(6)$, and $C(10)$. The $(22E)$ -configuration of the side chain was apparent from the vicinal ${}^{1}H, {}^{1}H$ coupling constant of 15.4 Hz. The relative configuration of 1 was assigned on the basis of NOESY correlations (Fig.). A pseudoaxial (α) orientation of H-C(9) was indicated by the NOESY correlations of this H-atom with $H_a-C(1)$ and $H_a-C(11)$, and by the absence of a cross-peak with Me(19). The Obearing CH group H-C(12) exhibited intense NOESY correlations with H-C(10), $H_a-C(11)$, and H–C(17), which demonstrated the coplanar (a -face) relation of these H-atoms. In addition, both H-C(12) and H-C(17) lacked a NOESY correlation to Me(18). On the other hand, O-bearing H-C(15) showed NOESY correlations with Me(18) and $H_{\beta}-C(16)$. The NOESY correlations from Me(18) to H–C(20), and from $H-C(17)$ to Me(21) provided the relative configurations at $C(13)$, $C(17)$, and $C(20)$. Therefore, compound 1 was assigned as $12\beta, 15\alpha, 25, 26$ -tetrahydroxyergosta-4,6,8(14),22-tetraen-3-one. The configurations of C(24) and C(25) remain unassigned.

Figure. Selected NOESY correlations for 1

	1			$\boldsymbol{2}$		
	$\delta(H)$	$\delta(C)$	HMBC	$\delta(H)$	$\delta(C)$	
CH ₂ (1)	1.78 – 1.82 (m, H_a)		33.9 2, 9, 10, 19	1.79 – 1.84 (m, H_a)	33.9	
	1.99 – 2.02 (m, H_8)		2, 3, 5, 10	1.99 – 2.03 (m, H_8)		
CH ₂ (2)	2.29 – 2.32 (m, H_a)		33.8 3, 10	2.29 – 2.33 (m, H_a)	33.8	
	2.46 – 2.52 (m, H_8)		1, 3	2.47 – 2.53 (m, H_{β})		
C(3)		197.4			197.2	
$H-C(4)$	5.65 (s)		123.1 2, 6, 10	5.64 (s)	123.1	
C(5)		162.9			162.7	
$H-C(6)$	6.10 $(d, J = 9.7)$		124.8 4, 5, 8, 10	6.11 $(d, J = 9.7)$	124.9	
$H-C(7)$	7.26 $(d, J = 9.7)$		134.4 5, 8, 9, 14	7.27 $(d, J = 9.7)$	134.3	
C(8)		128.4			128.5	
$H-C(9)$	2.40 (dd, $J = 10.3, 7.6$)		45.5 8, 10, 11, 14, 19	2.40 $(dd, J=10.3, 7.8)$	45.6	
C(10)		36.7			36.7	
CH ₂ (11)	$1.72 - 1.74$ (m, H_a)		28.5 8, 9, 12, 13	$1.73 - 1.77$ (m, H_a)	28.5	
	$1.68 - 1.71$ (m, H_8)		10, 12, 13	1.68 – 1.71 (m, H_6)		
$H-C(12)$	$3.66 - 3.70$ (<i>m</i>)	75.4		$3.66 - 3.70$ (<i>m</i>)	75.4	
C(13)		49.3			49.3	
C(14)		156.0			155.8	
$H-C(15)$	4.86 (br. $t, J=6.2$)		68.9 8, 13, 14, 17	4.87 (br. t, $J=6.4$)	68.9	
CH ₂ (16)	$1.71 - 1.73$ (m, H_a)		35.5 14, 15	$1.70 - 1.75$ (m, H_a)	35.6	
	$2.04 - 2.08$ (m, H_8)		15, 20	$2.04 - 2.08$ (m, H_8)		
$H - C(17)$	$1.88 - 1.92$ (<i>m</i>)		53.5 12, 13, 18	$1.88 - 1.92$ (<i>m</i>)	53.4	
Me(18)	0.96(s)		15.5 12, 13, 14, 17	0.96(s)	15.4	
Me(19)	1.05(s)		$16.4 \quad 1, 5, 9, 10$	1.06(s)	16.4	
$H - C(20)$	$2.98 - 3.03$ (<i>m</i>)		35.8 13, 16, 17, 21, 22, 23	$3.02 - 3.07$ (<i>m</i>)	36.0	
Me(21)	1.07 $(d, J = 7.0)$		22.8 17, 20, 22	1.09 $(d, J=7.0)$	22.6	
$H-C(22)$	5.44 $(dd, J=15.4, 8.6)$		135.1 20, 21, 23, 24	5.56 (dd, $J = 15.3$, 9.0)	138.2	
$H - C(23)$	5.51 (dd, $J=15.4, 7.8$)		131.1 20, 22, 24, 28	5.29 (dd, $J = 15.3, 9.5$)	127.2	
$H - C(24)$	$2.28 - 2.31$ (<i>m</i>)		43.7 22, 23, 25, 26, 27, 28 2.23 - 2.27 (<i>m</i>)		55.1	
C(25)		73.6			72.3	
$CH2(26)$ or Me(26)	3.44 $(dd, J=10.7, 5.2)$		68.0 25, 27	1.17(s)	29.4	
	3.34 $(dd, J=10.7, 5.7)$		27			
Me(27)	1.06(s)		21.2 24, 25, 26	1.16(s)	25.2	
$Me(28)$ or $CH2(28)$	0.98 $(d, J = 7.0)$		14.3 23, 24, 25	$3.80 - 3.84$ (<i>m</i>)	63.6	
				$3.63 - 3.67$ (<i>m</i>)		
$HO-C(12)$	3.91 $(d, J = 5.2)$		12, 13	3.86 $(d, J = 5.3)$		
$HO-C(15)$	3.94 $(d, J=6.5)$		14, 15	3.88 $(d, J=6.7)$		
$HO-C(25)$	3.13(s)		24, 25, 26, 27	4.08(s)		
$HO-C(26)$	3.59 (br. t, $J = 5.5$)					
$HO-C(28)$				3.95 (br. t, $J=4.6$)		

Table 1. ¹H- and ¹³C-NMR Data (500 and 125 MHz, resp.; in (D_6) acetone) of Compounds 1 and 2. δ in ppm, J in Hz.

The molecular formula of compound 2 was the same as $1, C_{28}H_{40}O_5$ (HR-ESI-MS). The NMR data showed very close resemblance to those of 1 for the tetracyclic ring moiety, but were different for the $C(20)$ – $C(28)$ side chain. The structure of the side chain was addressed on the basis of COSY and HMBC data. The connections $C(21)$ -C(20)-C(22)=C(23)-C(24)-C(28) were accomplished by COSY correlations. Two Me signals at δ (H) 1.17 (Me(26)) and 1.16 (Me(27)) showed HMBCs HO–CH

signals at $\delta(C)$ 72.3 (C(25)) and to C(24), and also correlated to each other. Therefore, compound 2 was elucidated as 12β ,15a,25,28-tetrahydroxyergosta-4,6,8(14),22-tetraen-3-one.

Compounds 1 and 2 are highly OH-substituted analogs of ergosta-4,6,8(14),22 tetraen-3-one, which was previously isolated from several fungi and plants. Derivatives of ergosta-4,6,8(14),22-tetraen-3-one with less OH groups were also reported as fungal secondary metabolites: ganodermanosides A and B $(15\alpha$ - and 15β -hydroxyergosta-4,6,8(14),22-tetraen-3-ones) from Ganoderma lucidum [16], 25-hydroxyergosta-4,6,8(14),22-tetraen-3-one from Zopfiella longicaudata [17], gymnasterone D (ergosta-4,6,8(14),22-tetraene-3,15-dione) from Gymnascella dankaliensis OUPS-N134 [18], and d1067331 (25,28-dihydroxyergosta-4,6,8(14),22-tetraen-3-one; undefined configuration) from Aspergillus terreus SANK22295 [19].

Compound 3 was obtained as a yellow powder, and the molecular formula was determined by HR-ESI-MS as $C_{22}H_{24}N_2O_6S_2$. The ¹H- and ¹³C-NMR data (*Table 2*) were similar to those of the known co-metabolite 4 [11]. The significant differences were the absence of one of the two AcO groups and the upfield shift of $H-C(8')$ signal $(\delta(H)$ 4.75) when compared to 4 (H–C(8'), $\delta(H)$ 6.09 (d, J = 13.9)). In addition, a OH group assignable to HO--C(8') exhibited HMBCs to C(7') , C(8') , and C(9') . The large coupling constant for H–C(8')/H–C(9') ($J = 13.4$) was consistent with an antiperiplanar relation of these H-atoms, similar to 4. The similarity of the NMR spectroscopic data with those of the known compounds $4 - 6$ and their co-occurrence suggested that 3 should possess the same relative and absolute configuration. Therefore, compound 3 was assigned as bisdethiobis(methylsulfanyl)apoaranotin.

Table 2. ¹H- and ¹³C-NMR Data (500 and 125 MHz, resp.; in (D_6) acetone) *of Compound* 3. δ in ppm, J in Hz.

	$\delta(H)$	$\delta(C)$		$\delta(H)$	$\delta(C)$
C(1)		167.9	C(1')		164.0
C(2)		70.2	C(2')		73.7
CH ₂ (3)	3.18 (br. s)	39.0	CH ₂ (3')	3.05 (br. s)	37.9
C(4)		111.0	C(4')		133.4
$H - C(5)$	6.76 $(q, J = 2.1)$	137.5	$H - C(5')$	$5.97 - 5.99$ (<i>m</i>)	119.1
$H-C(6)$	6.39 (dd, $J = 8.3$, 2.3)	139.6	$H-C(6')$	$5.87 - 5.91$ (<i>m</i>)	123.0
$H - C(7)$	4.70 (dd, $J = 8.3$, 1.8)	106.0	$H-C(7')$	5.64 (br. d, $J=9.7$)	130.5
$H - C(8)$	5.73 $(dt, J = 8.1, 2.1)$	71.6	$H - C(8')$	4.75 (br. $d, J = 13.4$)	74.3
$H-C(9)$	$5.05 - 5.07$ (<i>m</i>)	60.1	$H-C(9')$	4.85 (br. d, $J = 13.4$)	68.9
$MeS-C(2)$	2.27(s)	13.9	$MeS-C(2')$	2.23(s)	13.8
$AcO-C(8)$	2.00(s)	20.2	$HO-C(8')$	5.35 (s)	
		169.2			

As a part of the search for drug leads from fungal metabolites, the new compounds 1 – 3 were subjected to our biological assay protocols to investigate antitubercular (Mycobacterium tuberculosis H37Ra) and antimalarial (Plasmodium falciparum K1) activities, and cytotoxicities against three cancer cell lines (KB, MCF-7, and NCI-H187). Compound 3 exhibited weak antimycobacterial activity with a MIC of 25 μ g/ ml, while it was inactive against the malarial parasite and cancer cells at $10 \mu g/ml$ and $50 \mu g/ml$, respectively. Steroids 1 and 2 were inactive in these assays.

Financial support from the Bioresources Research Network, National Center for Genetic Engineering and Biotechnology (BIOTEC), is gratefully acknowledged.

Experimental Part

General. M.p.: Electrothermal IA9100 digital melting-point apparatus. Optical rotations: JASCO P-1030 digital polarimeter. UV Spectra: analytikjena SPEKOL 1200 spectrophotometer. IR Spectra: Bruker ALPHA spectrometer. NMR Spectra: Bruker AV500D spectrometer; at 500 and 125 MHz for ¹H and ¹³C, rsp.; in (D_6) acetone. HR-ESI-MS: *Bruker micrOTOF* mass spectrometer.

Fermentation, Extraction, and Isolation. The profile of Aspergillus terreus BCC 4651 was previously reported [10]. This fungus was maintained on potato dextrose agar at 25° . The agar was cut into small plugs and inoculated into 4×250 -ml *Erlenmeyer* flasks containing 25 ml of potato dextrose broth (PDB; potato starch 4.0 g/l, dextrose 20.0 g/l). After incubation at 25 $^{\circ}$ for 6 d on a rotary shaker (200 rpm), each primary culture was transferred into a 1000-ml Erlenmeyer flask containing 250 ml of the same liquid medium (PDB), and incubated at 25° for 6 d on a rotary shaker (200 rpm). These secondary cultures were transferred into 40×1000 -ml *Erlenmeyer* flasks containing 250 ml of *Czapek–Dox* broth (sucrose 30.0 g/l, NaNO₃ 3.0 g/l, K₂HPO₄ 1.0 g/l, MgSO₄ · 7 H₂O 0.5 g/l, KCl 0.5 g/l, FeSO₄ · 7 H₂O 0.1 g/l), and the final fermentation was carried out at 25° for 42 d under static conditions. The cultures were filtered to separate broth (filtrate) and mycelia (residual cakes). The filtrate was extracted with AcOEt (3×15 l) to give a brown gum (1.84 g). This extract was fractionated by column chromatography (CC) on Sephadex $LH-20$ (60 \times 4.0 cm i.d., MeOH) to obtain eight pooled fractions. Fr. 2 (139 mg) was subjected to CC on SiO₂ (MeOH/CHCl₃, step gradient elution from 5:95 to 100:0) followed by prep. HPLC using a reverse phase column (Dionex SunFire, 10 µm, 150 mm × 19 mm i.d.; MeCN/H₂O, gradient from 20:80 to 100:0 over 30 min, flow rate 10 ml/min) to furnish 1 (4.5 mg) and 2 (8.5 mg). Fr. 3 (922 mg) was fractionated by CC on SiO₂ and prep. HPLC (MeCN/H₂O) to yield $3(4.7 \text{ mg})$, $4(33.7 \text{ mg})$, $5(22.6 \text{ mg})$, and $6(64.9 \text{ mg})$. Butyrolactone I (23.2 mg) was isolated from Fr. 5 (201 mg).

 $(12\beta, 15\alpha, 22E)$ -12,15,25,26-Tetrahydroxyergosta-4,6,8(14),22-tetraen-3-one (1). Pale yellow solid. M.p. $118-119^\circ$. $\left[\alpha\right]_D^{25} = +519$ (c=0.067, MeOH). UV (MeOH): 338 (4.56). IR (ATR): 3372, 2964, 1640, 1583, 1196, 1019, 876. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS: 479.2769 ($[M + Na]$ ⁺, $C_{28}H_{40}NaO_5^+$; calc. 479.2773).

 $(12\beta, 15\alpha, 22E)$ -12,15,25,28-Tetrahydroxyergosta-4,6,8(14),22-tetraen-3-one (2). Pale yellow solid. M.p. $124-125^\circ$. $\left[\alpha\right]_D^{25} = +556$ (c=0.097, MeOH). UV (MeOH): 339 (4.71). IR (ATR): 3350, 2962, 1735, 1644, 1586, 1374, 1228, 1022, 872. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS: 479.2773 ([*M* + $\rm Na$]⁺, C₂₈H₄₀NaO₅; calc. 479.2773).

Bisdethiobis(methylsulfanyl)apoaranotin $((-5S, 5aS, 7aR, 12S, 12aS, 14aR) - 5, 5a, 7a, 8, 12, 12a, 14a, 15-$ Octahydro-12-hydroxy-7a,14a-bis(methylsulfanyl)-7,14-dioxo-7 H,14 H-oxepino[3'',4'': 4',5']pyrrolo- [1',2': 4,5]pyrazino[1,2-a]indol-5-yl Acetate; 3). Yellow solid. M.p. 193–194°. $\left[a\right]_D^{24} = -152$ (c = 0.05, MeOH). UV (MeOH): 224 (4.04), 261 sh (3.85), 341 sh (3.36). IR (ATR): 3336, 1734, 1665, 1638, 1382, 1233, 1026. ¹H- and ¹³C-NMR: see *Table 2*. HR-ESI-MS: 499.0969 ($[M + Na]$ ⁺, C₂₂H₂₄N₂NaO₆S₂⁺; calc. 499.0973).

Biological Assays. Growth inhibitory activity against Mycobacterium tuberculosis H37Ra (African green monkey kidney fibroblasts) was performed in triplicate using the green fluorescent protein microplate assay (GFPMA) [20]. The standard anti-TB drug, isoniazid, showed *MIC* values of 0.0234 – $0.0468 \mu g/ml$. The assay to test the activity against *Plasmodium falciparum* (K1, multi-drug resistant strain) was performed using the microculture radioisotope technique [21]. Cytotoxic activities against human cancer cell lines (KB, MCF-7, and NCI-H187) were evaluated using the resazurin microplate assay [22].

REFERENCES

- [1] J. C. Sheehan, W. B. Lawson, R. J. Gaul, J. Am. Chem. Soc. 1958, 80, 5536.
- [2] R. J. Cole, R. H. Cox, in 'Handbook of Toxic Fungal Metabolites', Academic Press, New York, 1981, Chapt. 18, pp. 753 – 822.
- [3] W. Sankawa, Y. Ebizuka, H. Noguchi, Y. Ishikawa, S. Kitaghawa, Y. Yamamoto, T. Kobayashi, Y. Iitak, H. Seto, Tetrahedron 1983, 39, 3583.
- [4] R. L. Monaghan, A. W. Alberts, C. H. Hoffman, G. Albers-Schonberg, U.S. Patent, 4,231,938, 1980.
- [5] R. E. Lewis, N. P. Wiederhold, M. S. Lionakis, R. A. Prince, D. P. Kontoyiannis, J. Clin. Microbiol. 2005, 43, 6120.
- [6] P. A. Miller, P. W. Trown, W. Fulmor, G. O. Morton, J. Karliner, Biochem. Biophys. Res. Commun. 1968, 33, 219.
- [7] N. Kiriyama, K. Nitta, Y. Sakaguchi, Y. Taguchi, Y. Yamamoto, Chem. Pharm. Bull. 1977, 25, 2593.
- [8] K. Nitta, N. Fujita, T. Yoshimura, K. Arai, Y. Yamamoto, Chem. Pharm. Bull. 1983, 31, 1528.
- [9] K. V. Rao, A. K. Sadhukhan, M. Veerender, V. Ravikumar, E. V. S. Mohan, S. D. Dhanvantri, M. Sitaramkumar, J. M. Babu, K. Vyas, G. O. Reddy, Chem. Pharm. Bull. 2000, 48, 559.
- [10] R. Haritakun, P. Rachtawee, R. Chanthaket, N. Boonyuen, M. Isaka, Chem. Pharm. Bull. 2010, 58, 1545.
- [11] N. Neuss, R. Nagarajan, B. B. Molloy, L. L. Huckstep, Tetrahedron Lett. 1968, 9, 4467.
- [12] W. Wang, Y. Wang, H. Tao, X. Peng, P. Liu, W. Zhu, J. Nat. Prod. 2009, 72, 1695.
- [13] R. Nagarajan, L. L. Huckstep, D. H. Lively, D. C. DeLong, M. M. Marsh, N. Neuss, J. Am. Chem. Soc. **1968**, 90, 2980.
- [14] J. W. Moncrief, *J. Am. Chem. Soc.* **1968**, 90, 6517.
- [15] S. Kamata, H. Sakai, A. Hirota, Agric. Biol. Chem. 1983, 47, 2637.
- [16] Y. Weng, L. Xiang, A. Matsuura, Y. Zhang, Q. Huang, J. Qi, Bioorg. Med. Chem. 2010, 18, 999.
- [17] H. Fujimoto, E. Nakamura, E. Okuyama, M. Ishibashi, Chem. Pharm. Bull. 2004, 52, 1005.
- [18] T. Amagata, M. Tanaka, T. Yamada, M. Doi, K. Minoura, H. Ohishi, T. Yamori, A. Numata, J. Nat. Prod. 2007, 70, 1731.
- [19] M. Sugano, Y. Ogura, E. Hatano, T. Hamada, T. Hosoya, Japanese Patent, JP9202797, 1997.
- [20] C. Changsen, S. G. Franzblau, P. Palittapongarnpim, Antimicrob. Agents Chemother. 2003, 47, 3682. [21] R. E. Desjardins, C. J. Canfield, J. D. Haynes, J. D. Chulay, Antimicrob. Agents Chemother. 1979, 16,
- 710.
- [22] J. O'Brien, I. Wilson, T. Orton, F. Pognan, *Eur. J. Biochem.* **2000**, 267, 5421.

Received August 22, 2011