## New Acylated Oleanane and Lupane Triterpenes from Gymnema sylvestre

by Armando Zarrelli<sup>\*a</sup>), Afef Ladhari<sup>b</sup>), Rabiaa Haouala<sup>c</sup>), Giovanni Di Fabio<sup>a</sup>), Lucio Previtera<sup>a</sup>) and Marina DellaGreca<sup>a</sup>)

<sup>a</sup>) Department of Chemical Sciences, University Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, IT-80126 Napoli (phone: + 39-081-674472; fax: + 39-081-674393; e-mail: zarrelli@unina.it)
<sup>b</sup>) Department of Biology, Faculty of Science of Bizerte, Jarzouna 7021, Tunisia

<sup>c</sup>) Department of Biological Sciences and Plant Protections, Higher Institute of Agronomy of Chott Meriem, University of Sousse, 4042, Tunisia (UR03AGR04)

Phytochemical investigation of the aerial parts of *Gymnema sylvestre* led to the isolation of two known oleanane-type triterpenes, **1** and **3**, five new acylated derivatives, **2**, **4**, and **5**–**7**, and a new lupane-type triterpene, **8**. The structures and relative configurations of these compounds were elucidated by spectroscopic analyses, including 1D- and 2D-NMR spectroscopy and mass spectrometry, and by the comparison of their NMR data with those of related compounds.

**Introduction.** – Gymnema sylvestre (Asclepiadaceae), a vulnerable species, is a slow-growing, perennial woody climber in tropical and subtropical regions [1]. It is a potent antidiabetic plant and used in folk, ayurvedic, and homeopathic systems of medicine [2-5]. It is also used in the treatment of asthma, eye complaints, inflammations, family planning, and snake bite [6-9]. In addition, it possesses antimicrobial, antihypercholesterolemic [10], hepatoprotective [11], and sweet-suppressing activities [12]. It also acts as feeding deterrents to caterpillar, *Prodenia eridania* [13], prevents dental caries caused by *Streptococcus mutans* [14], and it is used in skin cosmetics [15]. The various reports on its multiple uses attracted attention for utilization of the plant for gymemic acid (active principle). From the organic extract of *G. sylvestre*, we had isolated oleanane and lupane triterpenes [16]. In the continuing the investigation of *G. sylvestre*, we have isolated two known oleanane-type triterpenes, **1** and **3**, one obtained for synthesis, **2**, four new acylated derivatives, **4**–**7**, and a new lupane-type triterpene, **8**.

**Results and Discussion.** – Compound **1** was identified as  $(3\beta, 16\beta)$ -olean-12-ene-3,16,23,28-tetrol by comparison of its spectral data with those in the literature [17].

Compound **2** had the molecular formula  $C_{38}H_{58}O_8$  on the basis of the *quasi*molecular-ion peak at m/z 643.4204 ( $[M + H]^+$ ) in the HR-ESI-MS spectrum and <sup>13</sup>C-NMR data. The <sup>1</sup>H-NMR spectra (*Table 1*) revealed the presence of two O-bearing CH and two O-bearing CH<sub>2</sub> groups assigned by a HSQC experiment. The high chemical-shift values and the presence of four *singlets*, at  $\delta(H)$  2.00 and 2.01, and 2.03 and 2.05 indicate that the carbinol functions are acetylated. The configurations of the O-bearing C-atoms have been deduced from a NOESY experiment, where the H-atom H–C(3) showed a NOE effect with the H-atoms of CH<sub>2</sub>(23), and H-atoms of Me(24)

<sup>© 2013</sup> Verlag Helvetica Chimica Acta AG, Zürich



showed NOE effect with the H-atoms Me(25), indicating an  $\alpha$  orientation for the CH<sub>2</sub>(23) OR group. In the same experiment, H–C(16) showed NOE effect with the H-atoms Me(27), justifying a  $\beta$  orientation for the AcO group at C(16). All the spectral data completely defined the structure of compound **2** as  $(3\beta,16\beta)$ -olean-12-ene-3,16,23,28-tetrayl tetraacetate, already obtained from acetylation of the corresponding compound **1** and identified only by mass spectrometry [18].

Compound **3** was identified as  $(3\beta,16\beta,21\beta,22\alpha)$ -olean-12-ene-3,16,21,22,23,28-hexol by comparison of its spectral data with those in the literature [19].

Compound **4** had the molecular formula  $C_{35}H_{58}O_7$  based on the *quasi*-molecular-ion peak at m/z 591.4254 ( $[M + H]^+$ ) in the HR-ESI-MS spectrum and <sup>13</sup>C-NMR data. The <sup>1</sup>H-NMR spectra (*Table 1*) revealed the presence of four O-bearing CH and two O-bearing CH<sub>2</sub> groups assigned by a HSQC experiment. The high chemical-shift value of H–C(21) (*doublet* at  $\delta(H)$  5.10) and the presence of signals assigned to a 2-methylbutanoyl unit (at  $\delta(H)$  2.44, 1.75–1.77, and 1.51–1.55, a Me *doublet* at  $\delta(H)$  1.18, and a Me *triplet* at  $\delta(H)$  0.96), indicate that the C(21) position is acylated. All the spectral data completely defined the structure of compound **4** as  $(3\beta,16\beta,21\beta,22\alpha)$ -3,16,22,23,28-pentahydroxyolean-12-en-21-yl (2S)-2-methylbutanoate.

Compound **5** was identified as  $(3\beta,16\beta,21\beta,22\alpha)$ -28-(acetyloxy)-3,16,22,23-tetrahydroxyolean-12-en-21-yl (2*S*)-2-methylbutanoate by comparison of its spectral data with those of the non-acylated triterpene **3**. It had the molecular formula  $C_{37}H_{60}O_8$  on the basis of the *quasi*-molecular-ion peak at m/z 633.4360 ( $[M + H]^+$ ) in the HR-ESI-MS spectrum and <sup>13</sup>C-NMR data. <sup>1</sup>H-NMR spectra (*Table I*) revealed the presence of four O-bearing CH and two O-bearing CH<sub>2</sub> groups assigned by a HSQC experiment. The high chemical-shift value of H–C(21) (*doublet* at  $\delta$ (H) 5.21), the presence of signals assigned to a 2-methylbutanoyl moiety (*multiplets* at  $\delta$ (H) 1.73–1.76, 1.53–1.56, a broad *quadruplet* at  $\delta$ (H) 2.45, a Me *doublet* at  $\delta$ (H) 1.18, and a Me *triplet* at  $\delta$ (H) 0.96), and the correlation between H–C(21) and C(1') ( $\delta$ (C) 176.7), in the HMBC spectrum, indicated that C(21) was 2-methylbutanoylated. The chemical-shift values of

|                       |                               | Table 1. Selec             | ted <sup>1</sup> H-NMR Data o | of Compounds $1-7$ (        | at 500 MHz, in CD <sub>3</sub>       | OD; $\delta(H)$ in ppm, J  | in Hz)                     |                                     |
|-----------------------|-------------------------------|----------------------------|-------------------------------|-----------------------------|--------------------------------------|----------------------------|----------------------------|-------------------------------------|
| H-Atom                | 1                             | <b>2</b> <sup>a</sup> )    | 3                             | 4                           | <b>5</b> <sup>a</sup> )              | <b>6</b> <sup>a</sup> )    | 7                          | 8                                   |
| H-C(3)                | 3.62 (dd, J = 10.8, 4.7)      | 4.75 $(dd, J = 11.7, 4.9)$ | 3.62 (dd, J = 11.3, 4.7)      | 3.61 $(dd, J = 12.5, 4.0)$  | 3.64 (br. $t, J = 7.5$ )             | 4.77 $(dd, J = 11.5, 4.7)$ | 3.60 $(dd, J = 10.0, 4.2)$ | 3.59 (dd, J = 11.4, 5.0)            |
| H-C(12)               | 5.22-5.27 (m)                 | 5.26 (br. t, J = 2.8)      | 5.34 (br. $t, J = 3.4$ )      | 5.38 (br. $t, J = 3.3$ )    | 5.30-5.35 ( <i>m</i> )               | 5.38-5.40 (m)              | 5.38-5.42 (m)              | 1.63 - 1.65 (m),                    |
| H_C(16)               | -1 90 90 4                    | 5 51 (44 1-12 2            | 161 (44 1-116                 | 4 60 (dd 1-108              | 0 11 - I PPJ CL V                    | 5 03 (44 I-11 8            | 4 80 (dd 1 - 10 8          | 1.58 - 1.61 (m)<br>3 70 (dd I - 118 |
|                       | $\frac{1.20}{12.0.5.0}$       | 5.4) $(uu, J - 12.2, 5.4)$ | 7.01 (uu, j - 11.0, 5.8)      | 7.02 (uu, J - 10.0)<br>5.1) | 7.12 ( <i>uu</i> , $3 - 11.2$ , 5.1) | 5.6)                       | 7.00 (uu, J - 10.0)        | 5.6)                                |
| H-C(21)               |                               |                            | 3.52 (d, J = 10.1)            | 5.10 (d, J = 10.5)          | $5.21 \ (d, J = 11.0)$               | 5.17 (d, J = 11.1)         | 5.18 (d, J = 10.7)         | 1.29 - 1.33 $(m)$                   |
| H-C(22)               |                               |                            | 3.96 (d, J = 10.5)            | 4.14 (d, J = 10.5)          | 3.88 (d, J = 11.0)                   | 5.44 ( $d, J = 11.1$ )     | 4.20 (d, J = 10.7)         | 2.25, (dd, J = )                    |
|                       |                               |                            |                               |                             |                                      |                            |                            | 12.0, 6.9), 1.03 - 1.07 (m)         |
| $CH_{2}(23)$          | 3.54 (d, J =                  | 3.85 (d, J = 11.7),        | 3.55 (d, J = 10.1),           | 3.53 (d, J = 9.5),          | 3.73 (d, J = 10.5),                  | 3.87 (d, J = 11.6),        | 3.59 (d, J=9.5),           | 3.52(d, J = 10.9),                  |
|                       | 10.5), 3.31                   | 3.66                       | 3.29 (obs)                    | 3.30 (obs)                  | 3.42 (d, J = 11.0)                   | 3.72 (d, J = 11.6)         | 3.30 (obs)                 | 3.30 (obs)                          |
|                       | (obs)                         | (d, J = 11.7)              |                               |                             |                                      | к<br>к                     |                            |                                     |
| Me(24)                | 0.72(s)                       | 0.81(s)                    | 0.71(s)                       | 0.71(s)                     | 0.89(s)                              | 0.84(s)                    | 0.71(s)                    | 0.69(s)                             |
| Me(25)                | 1.01(s)                       | $(s) (s^{\rm b})$          | 1.01(s)                       | 1.02(s)                     | (s) (3)                              | 0.93(s)                    | 1.03(s)                    | 0.91(s)                             |
| Me(26)                | 1.04(s)                       | $0.98^{b}$ ) (s)           | 1.03(s)                       | 1.04(s)                     | 0.98(s)                              | 0.98(s)                    | 1.04(s)                    | 1.13(s)                             |
| Me(27)                | 1.26(s)                       | 1.25(s)                    | 1.27(s)                       | 1.29(s)                     | 1.25(s)                              | 1.30(s)                    | 1.30(s)                    | 1.05(s)                             |
| $CH_2(28)$            | 3.86 (d, J =                  | 4.08 (d, J = 11.0),        | 3.91 (d, J = 10.9),           | 3.93 (d, J = 11.5),         | 4.12 (d, J = 11.0),                  | 4.26 $(d, J = 11.3)$ ,     | 3.95 (d, J = 11.6),        | 4.13 (d, J = 11.1),                 |
|                       | 10.5), 3.26                   | 3.98                       | 3.51 (d, J = 10.1)            | 3.59 (d, J = 11.5)          | 4.61 $(d, J = 11.2)$                 | 3.92 (d, J = 11.3)         | 3.57 (d, J = 11.6)         | 3.36 (obs)                          |
|                       | (d, J = 11.0)                 | (d, J = 11.0)              |                               |                             |                                      |                            |                            |                                     |
| Me(29)                | 0.91(s)                       | 0.89(s)                    | 0.99(s)                       | 0.88(s)                     | 0.89(s)                              | 0.99(s)                    | 0.86(s)                    | 1.12(s)                             |
| Me(30)                | 0.93(s)                       | 0.89(s)                    | 0.91(s)                       | 1.00(s)                     | 0.89(s)                              | 1.08(s)                    | 1.02(s)                    | 1.21(s)                             |
| MeCO                  |                               | 2.00 (s), 2.01 (s),        |                               |                             | 2.12(s)                              | 1.92(s), 2.02(s),          |                            |                                     |
|                       |                               | 2.03(s), 2.05(s)           |                               |                             |                                      | 2.04(s), 2.06(s), 2.10(s)  |                            |                                     |
| H–C(2')               |                               |                            |                               | 2.44 (br. $a, J = 6.3$ )    | 2.45 (br. $a, J = 6.5$ )             | 2.30  (br.  a, J = 6.3)    |                            |                                     |
| $CH_2(3')$            |                               |                            |                               | 1.75 - 1.77 (m),            | 1.73 - 1.76(m),                      | 1.66 - 1.71 (m),           | 6.86 (q, J = 8.0)          |                                     |
|                       |                               |                            |                               | $1.51 - 1.55 \ (m)$         | 1.53 - 1.56 (m)                      | $1.41 - 1.44 \ (m)$        |                            |                                     |
| Me(4')                |                               |                            |                               | 0.96 (t, J = 7.0)           | 0.96(t, J = 7.1)                     | 0.89 (t, J = 6.8)          | 1.83 (d, J = 8.0)          |                                     |
| Me(5′)                |                               |                            |                               | 1.18 $(d, J = 6.5)$         | 1.18 (d, J = 7.0)                    | 1.09 $(d, J = 7.0)$        | 1.87(s)                    |                                     |
| <sup>a</sup> ) In CDC | ll3. <sup>b</sup> ) Values wi | ith the same supers        | cripts are interchang         | geable.                     |                                      |                            |                            |                                     |

2202

## Helvetica Chimica Acta – Vol. 96 (2013)

CH<sub>2</sub>(28) (*doublets* at  $\delta(H)$  4.12 and 4.61), the presence of the signal assigned to AcO (*singlet* at  $\delta(H)$  2.12), and the correlation between CH<sub>2</sub>(28) and the carboxy C-atom ( $\delta(C)$  171.3), in the HMBC spectrum indicated that C(28) position was acetylated.

Compound **6** had molecular formula  $C_{45}H_{68}O_{12}$  based on *quasi*-molecular-ion peak at m/z 801.4782 ( $[M + H]^+$ ) in the HR-ESI-MS spectrum and <sup>13</sup>C-NMR data. The <sup>1</sup>H-NMR spectra (*Table 1*) revealed the presence of four O-bearing CH and two O-bearing CH<sub>2</sub> groups, assigned by a HSQC experiment. The high chemical-shift values of the carbinol H-atoms, the presence of signals assigned to the 2-methylbutanoyl moiety (*multiplets* at  $\delta(H)$  1.66–1.71, 1.41–1.44, a broad *quadruplet* at  $\delta(H)$  2.30, a Me *doublet* at  $\delta(H)$  1.09, and a Me *triplet* at  $\delta(H)$  0.89), and the presence of five *singlets* at  $\delta(H)$  1.92, 2.02, 2.04, 2.06, and 2.10, indicated that the carbinol functions were acetylated, and that C(21) was acylated. All the spectral data completely defined the structure of compound **6** as  $(3\beta,16\beta,21\beta,22\alpha)$ -3,16,22,23,28-pentakis(acetyloxy)olean-12-en-21-yl (2*S*)-2-methylbutanoate.

Compound **7** had molecular formula  $C_{35}H_{56}O_7$  as deduced from the *quasi*-molecular-ion peak at m/z 589.4099 ( $[M + H]^+$ ) in the HR-ESI-MS spectrum and <sup>13</sup>C-NMR data. The <sup>1</sup>H-NMR spectra (*Table 1*) revealed the presence of four O-bearing CH and two O-bearing CH<sub>2</sub> groups assigned by a HSQC experiment. The high chemical-shift value of H–C(21) (*doublet* at  $\delta$ (H) 5.18) and the presence of signals assigned to a tigloyl moiety (broad *quadruplet* at  $\delta$ (H) 6.86, a *doublet* Me at  $\delta$ (H) 1.83, and a Me *singlet* at  $\delta$ (H) 1.87) indicate that C(21) was acylated. All the spectral data completely defined the structure of compound **7** as  $(3\beta, 16\beta, 21\beta, 22\alpha)$ -3,16,22,23,28-pentahydrox-yolean-12-en-21-yl (2*E*)-2-methylbut-2-enoate, previously reported as product of the acid hydrolysis of the aesculioside A isolated from *Aesculus chinensis* [20].

Compound 8 was isolated as an amorphous solid. The molecular formula  $C_{30}H_{52}O_5$ (five degrees of unsaturation) was deduced from the quasi-molecular-ion peak at m/z493.3886 ( $[M + H]^+$ ) in the HR-ESI-MS. The IR spectrum showed absorptions at 3590, 3433 (OH) cm<sup>-1</sup>. The <sup>13</sup>C-NMR spectrum exhibited 27 signals ascribed by DEPT and HSQC spectra to six Me, eleven  $CH_2$  (two of them O-bearing), and seven CH groups (two of them O-bearing), and six quaternary C-atoms (one hydroxylated). These data suggested that  $\mathbf{8}$  was a pentacyclic triterpene. The <sup>1</sup>H-NMR signals, together with those derived from an HSQC experiment, showed two CH<sub>2</sub> signals as two *doublets* each at  $\delta(H)$  4.13, 3.36, and 3.52, 3.30, correlated to the C-atom signals at  $\delta(C)$  62.5 and 68.0, respectively, and two H-atom signals as *double doublets* ( $\delta(H)$  3.70 and 3.59), correlated to the C-atom signals at  $\delta(C)$  79.8 and 74.4, respectively. In the upfield region, six Me *singlets* ( $\delta$ (H) 1.21, 1.13, 1.12, 1.05, 0.91, and 0.69), correlated in the HSQC to the C-atom signals at  $\delta(C)$  31.8, 17.2, 25.9, 17.2, 17.6, and 13.0, respectively (Table 2), were observed. The HMBC experiment provided useful data to elucidate the structure. CH Signal at  $\delta(H)$  3.59 and CH<sub>2</sub> signals at  $\delta(H)$  3.52, 3.30 gave cross-peaks with the C-atom signals at  $\delta(C)$  49.2, 43.8, and 13.0 assigned to C(5), C(4), and C(24), respectively. The CH signal at  $\delta(H)$  3.70 and CH<sub>2</sub> signals at  $\delta(H)$  4.13, 3.36 gave crosspeaks with the signal of C(22) at  $\delta$ (H) 33.3, and with the signals at  $\delta$ (C) 51.3 and 48.8, assigned to C(18) and C(17), respectively. Finally, both the Me signals at  $\delta(H)$  1.21 and 1.12 gave cross-peaks with the C-atom signals at  $\delta(C)$  53.3 and 74.6 assigned to C(19) and C(20), respectively. These data were in accordance with a structure of a lupane

| C-Atom                                                                             | 1     | <b>2</b> <sup>a</sup> ) | 3     | 4     | <b>5</b> <sup>a</sup> ) | <b>6</b> <sup>a</sup> ) | 7                         | 8    |  |
|------------------------------------------------------------------------------------|-------|-------------------------|-------|-------|-------------------------|-------------------------|---------------------------|------|--|
| 1                                                                                  | 40.1  | 37.9                    | 39.6  | 40.1  | 38.4                    | 37.9                    | 40.1                      | 40.3 |  |
| 2                                                                                  | 27.9  | 22.9                    | 27.7  | 27.9  | 26.8                    | 27.2                    | 28.3                      | 28.1 |  |
| 3                                                                                  | 74.3  | 74.4                    | 73.9  | 74.2  | 76.2                    | 74.3                    | 74.3                      | 74.4 |  |
| 4                                                                                  | 43.7  | 40.4                    | 42.8  | 41.6  | 42.5                    | 43.2                    | 43.2                      | 43.8 |  |
| 5                                                                                  | 48.6  | 47.7                    | 47.7  | 47.9  | 46.8                    | 46.7                    | 49.0 (obs) <sup>b</sup> ) | 49.2 |  |
| 6                                                                                  | 19.6  | 17.8                    | 19.1  | 19.5  | 18.4                    | 16.8                    | 20.3                      | 19.6 |  |
| 7                                                                                  | 33.7  | 32.1                    | 33.2  | 33.7  | 32.4                    | 32.0                    | 33.8                      | 35.7 |  |
| 8                                                                                  | 41.5  | 39.9                    | 41.1  | 41.6  | 42.0                    | 41.4                    | 38.8                      | 44.0 |  |
| 9                                                                                  | 48.9  | 46.8                    | 47.7  | 48.6  | 49.6                    | 47.7                    | 48.0                      | 51.8 |  |
| 10                                                                                 | 38.2  | 36.5                    | 37.7  | 38.2  | 42.4                    | 36.3                    | 40.1                      | 38.5 |  |
| 11                                                                                 | 25.1  | 23.6                    | 24.7  | 25.2  | 23.6                    | 23.6                    | 25.2                      | 23.0 |  |
| 12                                                                                 | 124.3 | 123.4                   | 125.1 | 125.9 | 124.6                   | 124.7                   | 126.0                     | 25.9 |  |
| 13                                                                                 | 144.8 | 141.7                   | 142.6 | 142.7 | 140.4                   | 139.4                   | 142.0                     | 37.4 |  |
| 14                                                                                 | 45.1  | 43.2                    | 43.5  | 43.2  | 45.8                    | 45.0                    | 43.2                      | 46.0 |  |
| 15                                                                                 | 37.1  | 31.5                    | 37.2  | 36.7  | 35.5                    | 33.0                    | 36.8                      | 39.3 |  |
| 16                                                                                 | 68.2  | 68.6                    | 69.3  | 69.4  | 67.3                    | 67.0                    | 69.6                      | 79.8 |  |
| 17                                                                                 | 42.0  | 39.6                    | 47.0  | 44.0  | 45.8                    | 46.7                    | 47.4                      | 48.8 |  |
| 18                                                                                 | 45.5  | 43.0                    | 43.1  | 43.4  | 42.3                    | 42.9                    | 43.8                      | 51.3 |  |
| 19                                                                                 | 48.3  | 46.1                    | 47.3  | 47.4  | 45.6                    | 44.5                    | 47.4                      | 53.3 |  |
| 20                                                                                 | 32.2  | 30.6                    | 36.0  | 37.6  | 36.0                    | 36.8                    | 38.2                      | 74.6 |  |
| 21                                                                                 | 35.2  | 33.5                    | 78.1  | 80.2  | 77.4                    | 74.5                    | 80.7                      | 31.8 |  |
| 22                                                                                 | 26.6  | 23.5                    | 73.7  | 72.3  | 75.4                    | 70.5                    | 72.4                      | 33.3 |  |
| 23                                                                                 | 67.8  | 65.2                    | 67.2  | 67.6  | 71.4                    | 65.0                    | 67.8                      | 68.0 |  |
| 24                                                                                 | 13.2  | 13.1                    | 12.7  | 13.2  | 11.4                    | 13.1                    | 14.9                      | 13.0 |  |
| 25                                                                                 | 17.0  | 15.9                    | 16.4  | 17.0  | 16.6                    | 16.0                    | 17.0                      | 17.6 |  |
| 26                                                                                 | 17.9  | 16.8                    | 17.4  | 17.9  | 16.8                    | 16.5                    | 18.0                      | 17.2 |  |
| 27                                                                                 | 28.0  | 26.8                    | 27.4  | 28.5  | 26.7                    | 26.5                    | 27.9                      | 17.2 |  |
| 28                                                                                 | 69.6  | 66.3                    | 59.2  | 59.2  | 62.3                    | 60.8                    | 59.0                      | 62.5 |  |
| 29                                                                                 | 34.2  | 32.8                    | 30.1  | 30.3  | 29.2                    | 29.0                    | 30.2                      | 25.9 |  |
| 30                                                                                 | 24.8  | 23.5                    | 18.7  | 20.8  | 19.2                    | 19.7                    | 19.6                      | 31.8 |  |
| MeCO                                                                               |       | 20.8, 21.0,             |       |       | 20.8                    | 19.6, 21.               | 0,                        |      |  |
|                                                                                    |       | $2 \times 21.2$         |       |       |                         | $2 \times 21.2$         | ,                         |      |  |
|                                                                                    |       |                         |       |       |                         | 21.3                    |                           |      |  |
| MeCO                                                                               |       | 170.4, 170.6,           |       |       | 171.3                   | 168.6,                  |                           |      |  |
|                                                                                    |       | 170.9, 171.1            |       |       |                         | 168.8, 168              | 8.9,                      |      |  |
|                                                                                    |       |                         |       |       |                         | 170.9, 17               | 1.1                       |      |  |
| 1'                                                                                 |       |                         |       | 177.0 | 176.7                   | 176.6                   | 169.0                     |      |  |
| 2′                                                                                 |       |                         |       | 43.8  | 41.6                    | 40.5                    | 128.0                     |      |  |
| 3′                                                                                 |       |                         |       | 28.2  | 27.4                    | 26.5                    | 138.8                     |      |  |
| 4′                                                                                 |       |                         |       | 12.5  | 11.5                    | 11.7                    | 14.9                      |      |  |
| 5'                                                                                 |       |                         |       | 17.5  | 15.8                    | 17.7                    | 17.0                      |      |  |
| <sup>a</sup> ) In CDCl <sub>3</sub> . <sup>b</sup> ) obs, Obscured by the solvent. |       |                         |       |       |                         |                         |                           |      |  |

Table 2. <sup>13</sup>*C*-*NMR Data of Triterpenes* 1-8 (at 125 MHz, in CD<sub>3</sub>OD;  $\delta$ (C) in ppm)

triterpene. They allowed us to determine the structure as  $(3\beta,16\beta)$ -lupane-3,16,20,23,28-pentol for this compound.

The configurations of the O-bearing C-atoms of all compounds have been defined by NOESY experiments as described for compound **2**.

We thank the Associazione Italiana per la Promozione delle Ricerche su Ambiente e Salute umana (AIPRAS-Onlus) for financial support, and CIMCF (Centro Interdipartimentale di Metodologie Chimico-Fisiche) of University of Naples 'Federico II'.

## **Experimental Part**

General. HPLC: Shimadzu LC-10AD with a refractive-index detector Shimadzu RID-10A. Semiprep. HPLC: RP-18 (LiChrospher 10 µm,  $250 \times 10$  mm i.d., Merck) column with a flow rate of 1.2 ml min<sup>-1</sup>. Column chromatography (CC): Merck Kieselgel 60 (SiO<sub>2</sub>; 230–400 mesh). Prep. TLC: silica gel (UV-254 precoated) plates with 0.5- and 1.0-mm thickness (Merck). Optical rotations: in MeOH or CH<sub>2</sub>Cl<sub>2</sub>, with a Perkin-Elmer 141 polarimeter. IR Spectra: Jasco FT/IR-430 instrument. <sup>1</sup>H- and <sup>13</sup>C-NMR Spectra: Varian INOVA-500 FT NMR spectrometer (at 499.710 and 125.663 MHz for <sup>1</sup>H and <sup>13</sup>C, resp.), in CDCl<sub>3</sub> or CD<sub>3</sub>OD solns, at 25°,  $\delta$  in ppm, J in Hz.

*Plant Material. Gymnema sylvestre* was purchased from *Mother Herbs Ltd.* (13 Street, Madhu Vihar, Patpadganj, Delhi – 110092, India, e-mail: info@motherherbs.com) and identified by Prof. *Antonino Pollio* of the Dipartimento delle Scienze Biologiche of the University of Naples. A sample specimen (HERBNAWY 124) has been deposited with the herbarium of the University Federico II.

*Extraction and Isolation.* Dried and finely powdered aerial parts of *G. sylvestre* (7.0 kg) were sliced and extracted with  $H_2O$  (25 l for 24 h) and successively with  $CH_2Cl_2$  (20 l for 96 h). The org. extract was filtered and evaporated *in vacuo* to remove  $CH_2Cl_2$ . The resulting extract (350 g) was fractionated into acidic and neutral fractions with aq. 2N NaOH soln. The neutral soln., washed with  $H_2O$  and concentrated *in vacuo* (175 g), was subjected to CC (SiO<sub>2</sub>; petroleum ether (PE),  $CH_2Cl_2$ , AcOEt, Me<sub>2</sub>CO, MeOH, and  $H_2O$ ).

The fraction eluted with AcOEt (20.0 g) was purified by CC (SiO<sub>2</sub>; CH<sub>2</sub>Cl<sub>2</sub>/MeOH 100:0 to 0:100).

The fractions eluted with  $CH_2Cl_2$  (913 mg) were purified by flash CC (SiO<sub>2</sub>), and then the fractions eluted with  $CH_2Cl_2/MeOH 24:1$  (111 mg) were further subjected to HPLC (*RP-18*; MeOH/MeCN/H<sub>2</sub>O 3:4:3) to yield **4** (12 mg).

The fractions eluted with CH<sub>2</sub>Cl<sub>2</sub>/MeOH 9:1 (2.28 g) were separated by CC (SiO<sub>2</sub>). The fractions eluted with CHCl<sub>3</sub>/MeOH 47:3 (250 mg) were further purified by HPLC (*RP-18*; MeOH/MeCN/H<sub>2</sub>O 1:7:2) to yield triterpene **3** (10 mg); while the fractions eluted with CHCl<sub>3</sub>/MeOH 9:1 (293 mg) were further separated by HPLC (*RP-18*; MeOH/MeCN/H<sub>2</sub>O 2:2:1) to yield triterpenes **1** and **5** (80 and 5 mg, resp.).

The fractions eluted with CH<sub>2</sub>Cl<sub>2</sub>/MeOH 17:3 (1.28 g) were purified by flash CC (SiO<sub>2</sub>), and the fractions eluted with CH<sub>2</sub>Cl<sub>2</sub>/MeOH 9:1 (600 mg) were purified first by *RP-18 Sep–Pak* filter with MeOH/MeCN/H<sub>2</sub>O 1:2:2 and then by HPLC (*RP-18*; MeOH/MeCN/H<sub>2</sub>O 2:3:5) to yield **8** (3 mg).

The fractions eluted with CH<sub>2</sub>Cl<sub>2</sub>/MeOH 1:1 (6.3 g) were purified by CC (SiO<sub>2</sub>), and the fractions eluted with CH<sub>2</sub>Cl<sub>2</sub>/MeOH 19:1 (420 mg) were further subjected to flash CC (SiO<sub>2</sub>). The fractions eluted with PE/AcOEt 22:3 (195 mg) were finally purified by *RP-18 Sep–Pak* filter with MeOH/MeCN/H<sub>2</sub>O 2:1:2 to yield **2** (78 mg); the fractions eluted with PE/AcOEt 87:13 (145 mg) were purified first by *RP-18 Sep–Pak* filter with MeOH/MeCN/H<sub>2</sub>O 3:4:3 and then by HPLC (*RP-18*; MeOH/MeCN/H<sub>2</sub>O 3:5:2) to yield **7** (5 mg); finally the fractions eluted with PE/AcOEt 1:1 (35 mg) were purified by HPLC (*RP-18*; MeOH/MeCN 1:1) to give **6** (4 mg).

 $(3\beta, 16\beta)$ -Olean-12-ene-3,16,23,28-tetrol (1). Amorphous powder.  $[\alpha]_D^{25} = -0.67$  (c = 0.22, MeOH). IR (film): 3345, 1132, 1077, 1038. <sup>1</sup>H- and <sup>13</sup>C-NMR (CD<sub>3</sub>OD): see *Table 1* and 2, resp. ESI-MS: 475.2 ( $[M + H]^+$ ). HR-ESI-MS: 475.3780 ( $[M + H]^+$ ,  $C_{30}H_{51}O_4^+$ ; calc. 475.3782).

 $(3\beta,16\beta)$ -Olean-12-ene-3,16,23,28-tetrayl Tetraacetate (2). Amorphous powder.  $[a]_{25}^{25} = +50.0 (c = 0.23, MeOH)$ . IR (film): 3333, 1758, 1754, 1117, 1091, 1033. <sup>1</sup>H and <sup>13</sup>C-NMR (CD<sub>3</sub>OD): see Table 1 and 2, resp. HR-ESI-MS: 643.4204 ( $[M + H]^+$ ,  $C_{38}H_{59}O_8^+$ ; calc. 643.4205).

 $(3\beta, I\delta, 21\beta, 22\alpha)$ -Olean-12-ene-3, 16, 21, 22, 23, 28-hexol (3). Amorphous powder.  $[\alpha]_{25}^{25} = -1.2$  (c = 0.19, MeOH). IR (film): 3328, 1111, 1089, 1037. <sup>1</sup>H- and <sup>13</sup>C-NMR (CD<sub>3</sub>OD): see *Table 1* and 2, resp. HR-ESI-MS: 507.3678 ( $[M + H]^+$ ,  $C_{30}H_{51}O_6^+$ ; calc. 507.3680).

 $(3\beta,16\beta,21\beta,22\alpha)$ -3,16,22,23,28-Pentahydroxyolean-12-en-21-yl (2S)-2-Methylbutanoate (4). Amorphous powder.  $[\alpha]_D^{25} = +3.5$  (c = 0.21, MeOH). IR (film): 3370, 1747, 1118, 1096, 1046. <sup>1</sup>H- and <sup>13</sup>C-NMR (CD<sub>3</sub>OD): see *Table 1* and 2, resp. HR-ESI-MS: 591.4254 ( $[M + H]^+$ ,  $C_{35}H_{59}O_7^+$ ; calc. 591.4255).

 $(3\beta,16\beta,21\beta,22\alpha)$ -28-(Acetyloxy)-3,16,22,23-tetrahydroxyolean-12-en-21-yl (2S)-2-Methylbutanoate (5). Amorphous powder. [a]<sub>D</sub><sup>25</sup> = +16.5 (c = 0.22, MeOH). IR (film): 3352, 1746, 1113, 1091, 1041. <sup>1</sup>H- and <sup>13</sup>C-NMR (CD<sub>3</sub>OD): see *Table 1* and 2, resp. HR-ESI-MS: 633.4360 ([M+H]<sup>+</sup>, C<sub>37</sub>H<sub>61</sub>O<sub>8</sub><sup>+</sup>; calc. 633.4361).

 $(3\beta,16\beta,21\beta,22\alpha)$ -3,16,22,23,28-Pentakis(acetyloxy)olean-12-en-21-yl (2S)-2-Methylbutanoate (6). Amorphous powder.  $[\alpha]_{25}^{25} = +2.5$  (c = 0.21, MeOH). IR (film): 3355, 1764, 1750, 1113, 1090, 1042. <sup>1</sup>Hand <sup>13</sup>C-NMR (CD<sub>3</sub>OD): *Table 1* and 2, resp. HR-ESI-MS: 801.4782 ( $[M+H]^+$ ,  $C_{45}H_{68}O_{12}^+$ ; calc. 801.4784).

 $(3\beta,16\beta,21\beta,22\alpha)$ -3,16,22,23,28-Pentahydroxyolean-12-en-21-yl (2E)-2-Methylbut-2-enoate (7). Amorphous powder.  $[a]_{D}^{25} = +3.5$  (c = 0.22, MeOH). IR (film): 3352, 1725, 1113, 1093, 1041. <sup>1</sup>H- and <sup>13</sup>C-NMR (CD<sub>3</sub>OD): see *Table 1* and 2, resp. HR-ESI-MS: 589.4099 ( $[M+H]^+$ ,  $C_{35}H_{57}O_7^+$ ; calc. 589.4099).

 $(3\beta,16\beta)$ -Lupane-3,16,20,23,28-pentol (8). Amorphous powder.  $[\alpha]_{D}^{25} = +6.0 \ (c = 0.22, \text{ MeOH})$ . IR (film): 3334, 1118, 1090, 1041. <sup>1</sup>H- and <sup>13</sup>C-NMR (CD<sub>3</sub>OD): see *Table 1* and 2, resp. HR-ESI-MS: 493.3886 ( $[M + H]^+$ ,  $C_{30}H_{33}O_5^+$ ; calc. 493.3888).

## REFERENCES

- S. E. Potawale, V. M. Shinde, L. Anandi, S. Borade, H. Dhalawat, R. S. Deshmukh, *Pharmacology-online* 2008, 2, 144.
- [2] L. D. Kapoor, 'CRC Handbook of Ayurvedic Medicinal Plants', CRC Press, Boca Raton, 1990, p. 200.
- [3] A. Shiyovich, I. Sztarkier, L. Nesher, Am. J. Med. Sci. 2010, 340, 514.
- [4] S. Gurav, V. Gulkari, N. Duragkar, A. Patil, *Pharmacogn. Rev.* 2007, 1, 338.
- [5] N. B. Shah, A. B. Patel, D. C. Modi, H. A. Bhuva, Pharmacologyonline 2010, 2, 895.
- [6] D. Mahajan, A. R. Krishna, K. M. Gothandam, *Pharmacologyonline* 2011, 3, 785.
- [7] S. K. Gupta, A. Gupta, Indian Pharmacist (New Delhi, India) 2008, 7, 47.
- [8] V. M. Patell, PCT Int. Appl. WO 2005016224, A2 20050224, 2005.
- [9] B. Berthold, Centr. Med. Wiss. 1888, 460.
- [10] A. Saneja, C. Sharma, K. R. Aneja, R. Pahwa, Pharm. Lett. 2010, 2, 275.
- [11] A. A. Siddiqui, B. Ahmed, A. Dogra, J. Med. Arom. Plant Sci. 2000, 22, 223.
- [12] Y. Kurihara, Crit. Rev. Food Sci. Nutr. 1992, 32, 231.
- [13] M. S. Granich, B. P. Halpern, T. Eisner, J. Insect Physiol. 1974, 20, 435.
- [14] Y. Hiji, U.S. Pat. 4912089, A 19900327, 1990.
- [15] J. W. Choi, M. S. Jung, C. M. Park, Repub. Korean Kongkae Taeho Kongbo, KR 2010110990, A 20101014, 2010.
- [16] A. Zarrelli, M. DellaGreca, A. Ladhari, R. Haouala, L. Previtera, Helv. Chim. Acta, 2013, 96, 1036.
- [17] X.-A. Huang, Y.-J. Liang, X.-L. Cai, X.-Q. Feng, C.-H. Zhang, L.-W. Fu, W.-D. Deng, *Bioorg. Med. Chem. Lett.* 2009, 19, 6515.
- [18] S. B. Mahato, B. C. Pal, J. Chem. Soc., Perkin Trans. 1 1987, 629.
- [19] H.-M. Liu, F. Kiuchi, Y. Tsuda, Chem. Pharm. Bull. 1992, 40, 1366.
- [20] Z. Zhang, K. Koike, Z. Jia, T. Nikaido, D. Guo, J. Zheng, Chem. Pharm. Bull. 1999, 47, 1515.

Received January 23, 2013