A Chiron Approach for the Total Synthesis of Crassalactone A

by Jhillu Singh Yadav*, Gokada Maheswara Rao, and Bodakuntala Thirupathaiah

Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, India (fax: +91-40-27160512; e-mail: yadavpub@iict.res.in)

The total synthesis of crassalactone A (1) has been achieved in twelve steps starting from commercially available 1,5-D-gluconolactone. *Still–Gennari* olefination, one-pot deprotection, and lactonization are the key reactions involved in the synthesis.

Introduction. – Styryl lactones isolated from *Polyallthia* species have been used as a traditional medicine. The compounds from this species possess antimalarial [1], antiinflammatory [2], antimicrobial [3], anti-HIV [4], and cytotoxic activities [5]. Among the styryl lactones crassalactone A (1), howiinol A (2), and tricinnamate (3) share the same core skeleton (*Fig.*). Recently, 1 was isolated from a cytotoxic AcOEt extract of the leaves and twigs of *Polyalthia crassa* by *Tuchinda et al.* [6]. Crassalactone A (1) exhibited excellent cytotoxic activities against murine lymphocytic leukemia (P-388; ED_{50} 0.18 µg/ml), human nasopharyngeal carcinoma (KB; 1.7 µg/ml), human colon cancer (Col-2; 1.9 µg/ml), human breast cancer (BCA-1; 0.92 µg/ml), human lung cancer (Lu-1; 1.9 µg/ml), and rat glioma (ASK; 1.6 µg/ml). These excellent biological activities have encouraged us to attempt at the total synthesis of crassalactone A (1) and its analogs, and to investigate for further pharmacological properties. So far, there is only one total synthesis reported for crassalactone A [7].

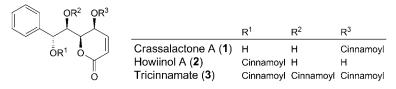
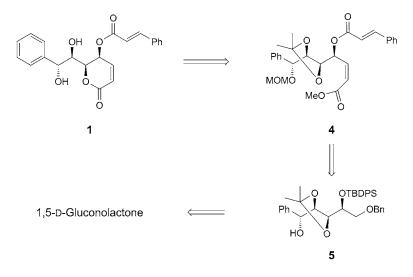
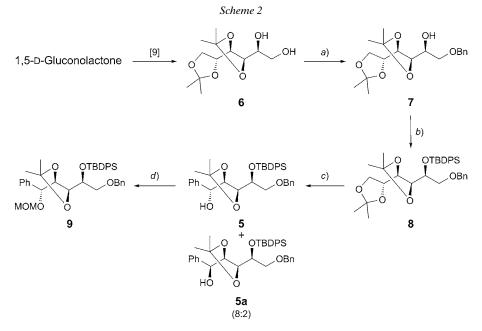


Fig. 1. Structures of some styryl-containing lactones

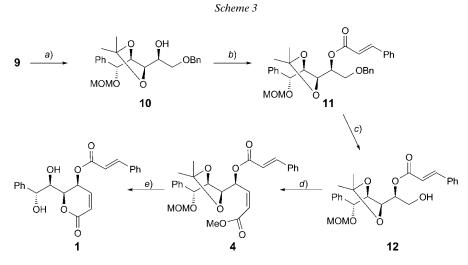

As part of our ongoing research program on synthesis of biologically active lactonecontaining natural products [8], herein, we report the total synthesis of crassalactone A (1) starting from commercially available 1,5-D-gluconolactone in which all four contiguous stereogenic centers are present as required for 1.

Results and Discussion. – Retrosynthetically, we envisioned crassalactone A (1) to be synthesized from intermediate 4 through one-pot acetonide deprotection and lactonization, 4, in turn, could be obtained from 5 *via* MOM protection, desilylation,

^{© 2013} Verlag Helvetica Chimica Acta AG, Zürich


cinnamoylation, debenzylation, oxidation, and *Still–Gennari* olefination reaction. The key precursor **5** could be obtained from commercially available 1,5-D-gluconolactone in five steps (*Scheme 1*).

Scheme 1. Retrosynthetic Analysis of Crassalactone A (1)



The synthesis started from the commercially available, inexpensive 1,5-D-gluconolactone, which was converted to diol **6**, in 65% overall yield, as described in [9]. The primary OH group was selectively protected as the corresponding benzyl ether **7** by using dibutyltinoxide (Bu₂SnO), benzyl bromide (BnBr), and Bu₄NI. The free secondary OH group was masked as the silyl ether **8** by treatment of **7** with 'Bu(Ph)₂-SiCl chloride in the presence of NaH (*Scheme 2*).

Compound 8 was subjected to 'dehomologation' by one-pot primary acetonide deprotection and degradation of the resulting diol with $H_{5}IO_{6}$ in AcOEt [10] to furnish the aldehyde, which was further subjected to Grignard reaction with PhMgBr (in situ prepared from PhBr and Mg) to afford an easily separable (column chromotography) diastereoisomer mixture 5/5a (in a ratio of 8:2). The desired major product 5 was treated with methoxymethyl chloride (MOMCl) in the presence of Hünig's base to obtain the corresponding methoxymethyl ether 9 in 85% yield. With all the stereogenic centers fixed, the stage was set to proceed further for cinnamoylation and lactone-ring formation. For this purpose, we proceeded with silvl deprotection of 9 to yield the alcohol 10, which was coupled to cinnamic acid according to standard protocol to yield ester 11 in 85% yield (Scheme 3). Debenzylation with DDQ afforded primary alcohol as the precursor for C_2 homologation reaction and lactonization. Thus, the alcohol 12 was oxidized with 2-iodoxybenzoic acid (IBX) in DMSO to afford the corresponding aldehyde, which was subjected to cis-selective Still-Gennari olefination reaction with bis(2,2,2-trifluoroethyl) [(methoxycarbonyl)methyl]phosphonate in the presence of NaH to yield the (Z)- α , β -unsaturated ester **4** exclusively in 85% yield [11]. To obtain

a) Bu₂SnO, BnBr, Bu₄NI (TBAI), reflux, toluene, 12 h; 80%. *b*) NaH, 'Bu(Ph)₂SiCl (TBDPSCl), THF, 0° to r.t., 6 h; 90%. *c*) i. H₅IO₆, AcOEt, 0° to r.t., 8 h; 87%; ii. PhBr, Mg, THF, 0° to r.t., 3 h; 76%. *d*) Methoxymethyl (MOM) chloride, EtNⁱPr₂, CH₂Cl₂, r.t., 12 h; 85%.

a) Bu₄NF (TBAF), THF, 0° to r.t., 5 h; 95%. b) Cinnamic acid (=(E)-3-phenylprop-2-enoic acid), N,N'-dicyclohexylcarbodiimide (DCC), 4-(dimethylamino)pyridine, CH₂Cl₂, r.t., 4 h; 91%. c) 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), CH₂Cl₂/H₂O, 0° to r.t., 12 h; 72%. d) i. 2-Iodoxybenzoic acid (IBX), CH₂Cl₂/DMSO, 0° to r.t., 4 h; ii. (CF₃CH₂)₂P(O)CH₂COOMe, NaH, THF, -78°, 1 h; overall yield for two steps 85%. e) CF₃COOH (TFA), CH₂Cl₂, H₂O, r.t., 12 h; 65%.

the lactone, we performed an acid-catalyzed one-pot deprotection and cyclization reaction. Thus, compound **4** was treated with CF₃COOH (TFA) in CH₂Cl₂/H₂O to give the desired product crassalactone A (**1**) in 65% yield (*Scheme 3*). The spectroscopic and physical properties of our synthetic compound **1** were in good agreement with the those in the literature [6][7].

Conclusions. – In summary, we have demonstrated an efficient synthetic route for the total synthesis of crassalactone A. The key steps involved in this synthesis are *Still–Gennari* olefination, one-pot deprotection, and lactonization. The total synthesis has been achieved in twelve steps with 8.09% overall yield.

G. M. R. and B. T. thank CSIR, New Delhi, India, for the award of fellowships. J. S. Y. thanks CSIR for Bhatnagar Fellowship and DST for J. C. Bose Fellowship.

Experimental Part

General. All reagents were reagent grade and used without further purification, unless specified otherwise. Solvents were distilled prior to use: THF, toluene and Et₂O were distilled from Na and benzophenone ketyl; MeOH from Mg and I₂, and CH₂Cl₂ from CaH₂. All air- or moisture-sensitive reactions were conducted under N₂ or Ar in flame-dried or oven-dried glassware with magnetic stirring. Column chromatography (CC): silica gel (SiO₂; 60–120 mesh or 100–200 mesh) packed in glass columns; technical-grade AcOEt and petroleum ether (PE), distilled prior to use. Optical rotations: digital polarimeter *Jasco DIP-360*, using a 1-ml cell with a 1-dm path length. FT-IR Spectra: on a *PerkinElmer 683 spectrometer* in KBr pellets CHCl₃/neat (as mentioned); $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR spectra: in CDCl₃ or C₆D₆, with 200 or 300-MHz, or 500-MHz spectrometer *Bruker 300* or *Varian Unity* 500, resp., at r.t.; coupling constant *J* in Hz; the chemical shifts in ppm with TMS as internal standard. ESI-MS and HR-ESI-MS: *Finnigan MAT* instrument.

(1S)-2-(Benzyloxy)-1-[(4R,4'R,5R)-2,2,2',2'-tetramethyl-4,4'-bi-1,3-dioxol-5-yl]ethanol (7) [12]. A soln. of **6** [9] (10 g, 38.1 mmol) and Bu₂SnO (9.9 g, 40.0 mmol) was mixed azeotropically with toluene/ benzene three times on a rotavapor and was then taken in toluene (100 ml) and refluxed for 12 h. After cooling to r.t., BnBr (6.3 ml, 53.0 mmol) and Bu₄NI (21.1 g, 5.7 mmol) were added to the mixture, which was heated at reflux for 1.5 h. The mixture was poured into H₂O (100 ml) and extracted with AcOEt (3 × 40 ml). The combined org. layers were washed with sat. NaCl and dried (Na₂SO₄). The solvent was removed under reduced pressure, and the residue was purified by CC (PE/AcOEt 6 :4) to give **7** (10.75 g, 80%). Colorless oil. [a]²⁵_D = +4.60 (c = 1.55, CHCl₃). IR (neat): 3479, 2988, 2928, 1627, 1375, 1247, 1214, 1151, 1070, 846. ¹H-NMR (300 MHz, CDCl₃): 7.34–7.20 (m, 5 H); 4.58 (dd, J = 12.0, 8.3, 2 H); 4.17–4.10 (m, 1 H); 4.02–3.92 (m, 5 H); 3.59 (d, J = 7.5, 2 H); 2.42 (d, J = 7.7, 1 H); 1.40 (s, 3 H); 1.38 (s, 3 H); 1.37 (s, 3 H); 1.33 (s, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 1379; 128.2; 127.6; 127.5; 109.5; 109.3; 80.0; 77.0; 76.9; 73.1; 71.9; 68.8; 67.6; 27.0; 26.7; 26.4; 25.1. ESI-MS: 375 ([M + Na]⁺). HR-ESI-MS: 375.1797 ([M + Na]⁺, C₁₉H₂₈NaO⁺₆; calc. 375.1784).

 ${(1S)-2-(Benzyloxy)-1-[(4R,4'R,5S)-2,2,2',2'-tetramethyl-4,4'-bi-1,3-dioxol-5-yl]ethoxy](tert-butyl)-(diphenyl)silane (8). Alcohol 7 (1.0 g, 2.84 mmol) in THF (7 ml) was added to NaH (0.227 g, 5.68 mmol) in THF (3ml) at 0°. The mixture was warmed to r.t. for 1 h and TBDPSCl (0.72 ml, 2.84 mmol) was added at 0°. After warming to r.t. for 7 h, sat. NH₄Cl (3 ml) was slowly added to the mixture at 0°. The mixture was poured into H₂O (5 ml) and extracted with AcOEt (3 × 10 ml). The combined org. layers were washed with H₂O (3 × 5 ml) and dried (Na₂SO₄), and the solvent was removed under reduced pressure. The residue was purified by CC (PE/AcOEt 8:2) to give 8 (1.47 g, 90%). Colorless oil. <math>[a]_{25}^{25} = +33.70$ (c = 1.9, CHCl₃). IR (neat): 2927, 2857, 1460, 1374, 1216, 1073, 770. ¹H-NMR (300 MHz, CDCl₃): 7.75 – 7.65 (m, 4 H); 7.46 – 7.27 (m, 6 H); 7.24 – 7.17 (m, 3 H); 6.98 – 6.91 (m, 2 H); 4.24 (t, J = 7.1, 1 H); 4.14 – 3.96 (m, 6 H); 1.31 (s, 6 H); 1.03 (s, 9 H). ¹³C-NMR (75 MHz, CDCl₃): 137.7; 135.7; 135.5; 134.5; 134.5;

133.0; 129.4; 129.2; 127.7; 127.4; 127.1; 109.3; 109.2; 80.7; 76.8; 76.5; 72.5; 71.4; 71.3; 67.4; 27.2; 26.9; 26.7; 26.2; 25.1; 19.3. ESI-MS: 613 ($[M + Na]^+$). HR-ESI-MS: 613.2934 ($[M + Na]^+$, $C_{35}H_{46}NaO_6Si^+$; calc. 613.2961).

(R)- $[(4R,5S)-5-[(1S)-2-(Benzyloxy)-1-{[(tert-butyl)(diphenyl)silyl]oxy]ethyl]-2,2-dimethyl-1,3-di$ oxolan-4-yl](phenyl)methanol (5). To a soln. of 8 (1 g, 1.73 mmol) in AcOEt (10 ml) cooled to 0°. H₃IO₆(0.79 g, 3.47 mmol) was added, and the soln. was allowed to warm to r.t. for 12 h. The reaction wasquenched by the addition H₂O (5 ml), the mixture was extracted with AcOEt (10 ml), and the combinedorg. layers were washed with brine (3 ml) and dried (Na₂SO₄). The solvent was removed under reducedpressure, resulting in the formation of an aldehyde (0.761 g, 87%), which was immediately used for thenext step without further purification.

To a soln. of *Grignard* reagent (prepared *in situ* from Mg (0.07 g, 2.92 mmol) and PhBr (0.23 ml, 2.2 mmol) in THF (5 ml)) at -5° was added a soln. of the crude aldehyde (0.76 g, 1.46 mmol) in THF. Progress of the reaction was monitored by TLC, and after completion the reaction was cautiously quenched by addition of sat. NH₄Cl (5 ml). The mixture was then poured into H₂O (10 ml) and extracted with Et₂O (3 × 7 ml). Combined Et₂O extracts were washed with brine (4 ml) and dried (Na₂SO₄). After evaporation of the solvent on rotavapor, the residue was purified by CC (SiO₂; PE/AcOEt 9 : 1) to yield **5** (0.529 g, 60.8%) as a pale-yellow liquid, and a minor isomer **5a** (0.132 g, 15.2%). [a]₂₅²⁵ = +24.2 (c = 1.6, CHCl₃). IR (neat): 3451, 2930, 2858, 1374, 1107, 701. ¹H-NMR (300 MHz, CDCl₃): 760 – 7.56 (m, 2 H); 7.55 – 7.45 (m, 2 H); 7.40 – 7.21 (m, 11 H); 7.20 – 7.15 (m, 3 H); 6.91 – 6.86 (m, 2 H); 4.58 (d, J = 6.0, 1 H); 4.39 (dd, J = 8.3, 6.0, 1 H); 4.10 (dd, J = 7.5, 2.2, 1 H); 3.87 (q, J = 11.3, 9.0, 2 H); 3.42 – 3.32 (m, 2 H); 1.45 (s, 6 H); 1.00 (s, 9 H). ¹³C-NMR (75 MHz, CDCl₃): 140.1; 138.0; 135.8; 135.6; 133.0; 129.6; 129.4; 128.5; 128.0; 127.5; 127.3; 127.2; 126.9; 109.7; 80.3; 78.5; 75.0; 72.5; 70.8; 70.7; 27.6; 27.3; 26.9; 19.5. ESI-MS: 619 ($[M + Na]^+$). HR-ESI-MS: 619.2934 ($[M + Na]^+$, C₃₇H₄₄NaO₅Si⁺; calc. 619.2956).

[(1S)-2-(*Benzyloxy*)-1-[(4S,5R)-5-[(R)-(*methoxymethoxy*)(*phenyl*)*methyl*]-2,2-*dimethyl*-1,3-*dioxolan-4-yl*]*ethoxy*](tert-*butyl*)(*diphenyl*)*silane* (**9**). EtNⁱPr₂ (2.60 ml, 15.1 mmol) and MOM-Cl (0.56 ml, 7.5 mmol) were added to a stirred soln. of **5** (1.5 g, 2.51 mmol) in dry CH₂Cl₂ (15 ml) at 0°. After stirring for 15 min at 0°, the mixture was warmed to r.t. for 12 h. The reaction was quenched with H₂O, and the mixture was extracted with CH₂Cl₂ (3×10 ml). Combined org. layers were washed with brine (5 ml) and dried (Na₂SO₄). Evaporation of the solvent, the residue was purified by CC (SiO₂; PE/AcOEt 9.5 :0.5) to yield **9** (1.36 g, 85%). Pale-yellow liquid. [a]₂₅²⁵ = +58.0 (c = 0.3, CHCl₃). IR (neat): 2932, 2858, 1455, 1213, 1107, 702. ¹H-NMR (300 MHz, CDCl₃): 7.67 - 7.61 (m, 2 H); 7.56 - 7.51 (m, 2 H); 7.44 - 7.23 (m, 12 H); 7.18 - 7.12 (m, 3 H); 6.88 - 6.82 (m, 1 H); 4.69 - 4.50 (m, 5 H); 4.03 (d, J = 7.5, 1 H); 3.75 (q, J = 12.0, 11.3, 2 H); 3.37 (s, 3 H); 3.15 - 3.00 (m, 2 H); 1.46 (s, 3 H); 1.30 (s, 3 H); 1.05 (s, 9 H). ¹³C-NMR (75 MHz, CDCl₃): 138.1; 137.2; 135.7; 135.5; 134.5; 133.2; 129.5; 129.3; 128.4; 128.2; 127.9; 127.4; 127.3; 127.0; 109.7; 93.5; 79.4; 78.7; 78.4; 71.9; 70.6; 70.0; 55.3; 27.5; 27.4; 26.8; 19.5. ESI-MS: 663 ([M + Na]⁺). HR-ESI-MS: 663.3101 ([M + Na]⁺, C₃₉H₄₈NaO₆Si⁺; calc. 663.3118).

(1S)-2-(Benzyloxy)-1- $\{(4R,5R)$ -5-[(R)- $(methoxymethoxy)(phenyl)methyl\}$ -2,2-dimethyl-1,3-dioxolan-4-yl\}ethanol (**10**). Bu₄NF (37.5 ml, 37.5 mmol) was added to stirred soln. of **9** (12 g, 18.7 mmol) in THF (120 ml) at 0°. The mixture was stirred for 5 h for r.t., and the reaction was quenched with H₂O (15 ml). The resulting mixture was diluted with AcOEt (3 × 50 ml). The org. phase was successively washed with H₂O (20 ml) and brine (20 ml), dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by CC (PE/AcOEt 8 :2) to afforded **10** (7.13 g, 95%). Colorless oil. $[a]_{25}^{25} =$ -25.0 (c = 0.3, CHCl₃). IR (neat): 3451, 2930, 1452, 1374, 1101, 1031, 701. ¹H-NMR (300 MHz, CDCl₃): 7.33 - 7.18 (m, 10 H); 4.64 (d, J = 6.8, 1 H); 4.55 (dd, J = 18.1, 6.6, 1 H); 4.51 (d, J = 6.8, 1 H); 4.39 - 4.36 (m, 2 H); 4.31 (t, J = 7.7, 1 H); 3.85 (t, J = 7.9, 1 H); 3.33 (s, 3 H); 3.32 - 3.21 (m, 3 H); 2.89 (br. s, 1 H); 1.42 (s, 3 H); 1.35 (s, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 137.9; 136.8; 128.4; 128.4; 128.2; 128.0; 127.5; 127.4; 109.7; 93.7; 79.2; 78.7; 77.3; 72.8; 71.5; 68.0; 55.3; 27.1. ESI-MS: 425 ([M + Na]⁺). HR-ESI-MS: 425.1941 ([M + Na]⁺, C₂₃H₃₀NaO⁺₆; calc. 425.1940).

(1S)-2-(Benzyloxy)-1-((4R,5R)-5-[(R)-(methoxymethoxy)(phenyl)methyl]-2,2-dimethyl-1,3-dioxolan-4-yl]ethyl (2E)-3-Phenylprop-2-enoate (11). Cinnamic acid (4.04 g, 27.3 mmol), DCC (4.20 g, 20.4 mmol), and DMAP (30 mg) were added to a soln. of 11 (5.5 g, 13.6 mmol) in CH₂Cl₂ (70 ml) at r.t., and stirred for 4 h. After completion of the reaction, the mixture was filtered through a short pad of *Celite*. The filtrate was washed with AcOEt (3 × 15 ml), and combined org. extracts were washed with brine (20 ml) and dried (Na₂SO₄). After evaporation of the solvent, the residue was purified by CC (PE/AcOEt 9 :1) to yield **11** (6.58 g, 91%). White solid. $[a]_{D}^{25} = +4.60 \ (c = 1.55, \text{CHCl}_3)$. M.p. 139–140° IR (neat): 3440, 3252, 2929, 1711, 1642, 1163, 701. ¹H-NMR (300 MHz, CDCl₃): 7.67 (d, J = 15.8, 1 H); 7.53 – 7.46 (m, 2 H); 7.41 – 7.18 (m, 13 H); 6.39 (d, J = 15.8, 1 H); 4.69–4.65 (m, 1 H); 4.59–4.49 (m, 3 H); 4.38 (s, 2 H); 4.12 (d, J = 3.7, 2 H); 3.54–3.43 (m, 2 H); 3.32 (s, 3 H); 1.44 (s, 3 H); 1.37 (s, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 165.9; 145.4; 137.9; 136.7; 134.2; 130.3; 128.8; 128.6; 128.5; 128.2; 128.1; 128.0; 127.5; 127.4; 117.5; 110.1; 93.8; 79.3; 78.5; 76.3; 72.6; 69.5; 68.4; 55.4; 27.3; 27.1. ESI-MS: 555 ($[M + \text{Na}]^+$). HR-ESI-MS: 555.2360 ($[M + \text{Na}]^+$, C₃₂H₃₆NaO₇⁺; calc. 555.2359).

(1S)-2-Hydroxy-1-[(4R,5R)-5-[(R)-(methoxymethoxy)(phenyl)methyl]-2,2-dimethyl-1,3-dioxolan-4-yl]ethyl (2E)-3-Phenylprop-2-enoate (**12**). DDQ (7.4 g, 33.0 mmol) was added to a stirred soln. of **11** (8.8 g, 16.5 mmol) in CH₂Cl₂ (90 ml) and H₂O (10 ml) at 0°. The mixture was stirred for 12 h at r.t., and the reaction was quenched by the addition of 10 ml of sat. NaHCO₃. The layers were separated, and the aq. layer was extracted twice with CH₂Cl₂ (3×30 ml). The combined org. extracts were dried (Na₂SO₄) and concentrated *in vacuo*. The crude product was purified by CC (SiO₂; PE/AcOEt 8:2) to give **12** (5.25 g, 72%). Yellow oil. [α]₂₅²⁵ = +8.7 (c = 0.4, CHCl₃). IR (neat): 3462, 2933, 1712, 1635, 1165, 1031, 765. ¹H-NMR (300 MHz, CDCl₃): 7.70 (d, J = 15.8, 1 H); 7.55 – 7.50 (m, 2 H); 7.41 – 7.29 (m, 8 H); 6.43 (d, J = 15.8, 1 H); 4.71 (d, J = 6.0, 1 H); 4.57 (q, J = 15.8, 6.8, 2 H); 4.23 (t, J = 6.0, 2 H); 4.07 (dd, J = 7.5, 2.2, 1 H); 3.70 – 3.65 (m, 2 H); 3.35 (s, 3 H); 1.49 (s, 3 H); 1.38 (s, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 166.5; 145.8; 136.5; 134.1; 130.5; 128.9; 128.7; 128.2; 128.0; 127.8; 117.3; 110.4; 93.9; 79.2; 78.5; 77.7; 72.1; 63.0; 55.5; 27.2; 27.0. ESI-MS: 465 ([M + Na]⁺). HR-ESI-MS: 465.1907 ([M + Na]⁺, C₂₅H₃₀NaO⁺₇; calc. 465.1889).

Methyl (2E)-4-{(4R,5R)-5-[(R)-(Methoxymethoxy)(phenyl)methyl]-2,2-dimethyl-1,3-dioxolan-4yl]-4-{[(2E)-3-phenylprop-2-enoyl]oxy]but-2-enoate (4). IBX (0.70 g, 2.26 mmol) and DMSO (2 ml) were added to a stirred soln. of **12** (0.5 g, 1.13 mmol) in anh. CH_2Cl_2 (7 ml) under N_2 at r.t., and stirred for 4 h. After completion of the reaction, the mixture was diluted with Et_2O (15 ml) and filtered through a pad of *Celite*, and the filtrate was washed with sat. NaHCO₃ (20 ml). The combined org. layers were dried (Na₂SO₄) and concentrated under vacuum. The crude aldehyde formed was immediately used for the further reaction without purification.

In a 50-ml round-bottom flask, NaH (0.068 g, 1.70 mmol) was taken in 4 ml of dry THF under N₂. After 5 min, bis(2,2,2-trifluoroethyl) [(methoxycarbonyl)methyl)]phosphonate (0.54 ml, 1.70 mmol) was added at 0°, and the mixture was stirred for 30 min. The mixture was cooled to -78° , and the aldehyde (0.50 g, 1.13 mmol) in dry THF (5 ml) was added during 10 min, and the resulting mixture was stirred for 1 h at -78° . The reaction was quenched with sat. NH₄Cl (5 ml), and the mixture was extracted with AcOEt (10 ml). The combined org. layers were concentrated under reduced pressure to give a residue, which was purified by CC (SiO₂; PE/AcOEt 9 :1) to furnish **4** (0.476 g, 85%). Yellow liquid. $[\alpha]_{25}^{25} = -15.0 \ (c = 1.0, CHCl_3)$. IR (neat): 2931, 1720, 1636, 1202, 1159, 1029, 767. ¹H-NMR (300 MHz, CDCl₃): 7.66 (d, J = 15.8, 1 H); 7.54 $-7.47 \ (m, 2 \text{ H})$; 7.40 $-7.26 \ (m, 8 \text{ H})$; 6.38 (d, J = 15.8, 1 H); 6.08 (dd, J = 8.3, 3.7, 1 H); 5.92 $-5.78 \ (m, 2 \text{ H})$; 4.72 (d, J = 6.0, 1 H); 4.60 (d, J = 6.8, 1 H); 4.54 (d, J = 6.8, 1 H); 4.28 $-4.19 \ (m, 2 \text{ H})$; 3.74 (s, 3 H); 3.33 (s, 3 H); 1.49 (s, 3 H); 1.33 (s, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 165.4; 143.2; 137.0; 134.1; 130.4; 128.8; 128.3; 128.1; 121.5; 117.4; 110.3; 94.0; 79.4; 78.8; 77.9; 70.0; 55.6; 51.5; 27.3; 27.1. ESI-MS: 519 ([M + Na]⁺). HR-ESI-MS: 519.1988 ([M + Na]⁺, C₂₈H₃₂NaO⁺₈; calc. 519.1995).

Crassalactone A (= (2\$,3\$)-2-[(1R,2R)-1,2-Dihydroxy-2-phenylethyl]-6-oxo-3,6-dihydro-2H-pyran-3-yl (2E)-3-Phenylprop-2-enoate; **1**). TFA (0.1 ml) was added to a stirred soln. of **4** (0.03 g, 0.060 mmol) in CH₂Cl₂ (3 ml)/H₂O (0.02 ml) at 0°, and the mixture was allowed to warm to r.t. for 12 h. The reaction was quenched with sat. NaHCO₃ (1 ml), and the mixture was extracted with CH₂Cl₂ (3 × 2 ml), and the extract was washed with brine, dried (Na₂SO₄), and evaporated under reduced pressure to provide a residue, which was purified by CC (SiO₂; PE/AcOEt 6:4) to furnish **1** (0.015 g, 65%). White solid. $[\alpha]_{D}^{25} = +317.0$ (c = 0.4, CHCl₃). M.p. 132-134°. IR (neat): 3424, 2924, 2854, 1750, 1711, 1168, 763. ¹H-NMR (300 MHz, CDCl₃): 7.62 (d, J = 16.0, 1 H); 7.51-7.30 (m, 10 H); 7.01 (dd, J = 9.5, 5.6, 1 H); 6.35 (d, J = 16.0, 1 H); 6.20 (d, J = 9.6, 1 H); 5.29 (dd, J = 5.6, 2.6, 1 H); 4.90 (d, J = 5.8, 1 H); 4.77 (dd, J = 5.8, 2.6, 1 H); 4.27 (m, 1 H), 2.05 (br. s, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 165.6; 162.4; 146.6; 140.6; 139.8; 133.8; 130.8; 128.9; 128.7; 128.4; 128.2; 126.5; 123.5; 116.4; 77.5; 73.6; 73.4; 62.6. ESI-MS: 403 ($[M + Na]^+$). HR-ESI-MS: 403.1151 ($[M + Na]^+$, $C_{22}H_{20}NaO_6^+$; calc. 403.1158).

REFERENCES

- [1] S. Kanokmedhakul, K. Kanokmedhakul, D. Yodbuddee, N. Phonkerd, J. Nat. Prod. 2003, 66, 616.
- [2] M. A. Mosaddik, M. E. Haque, M. A. Rashid, *Biochem. Syst. Ecol.* 2000, 28, 1039.
- [3] S. Faizi, R. A. Khan, S. Azher, S. A. Khan, S. Tauseef, A. Ahmad, *Planta Med.* 2003, 69, 350; M. M. Murthy, M. Subramanyam, M. H. Bindu, J. Annapurna, *Fitoterapia* 2005, 76, 336.
- [4] H.-Y. Li, N.-J. Sun, Y. Kashiwada, L. Sun, J. V. Snider, L. M. Cosentino, K.-H. Lee, J. Nat. Prod. 1993, 56, 1130; P. Tuchinda, M. Phomakotr, V. Reutrakul, W. Thanyachareon, S. Sophasan, C. Yoosook, T. Santisuk, J. M. Pezzuto, *Planta Med.* 2001, 67, 572.
- [5] Y.-C. Wu, C.-Y. Duh, S.-K.Wang, K.-S. Chen, T.-H. Yang, J. Nat. Prod. 1990, 53, 1327; G. Zhao, J. H. Jung, D. L. Smith, K. V. Wood, J. L. McLaughlin, *Planta Med.* 1991, 57, 380; X. Ma, I.-S. Lee, H.-B. Chai, K. Zaw, N. R. Fransworth, D. D. Soejarto, G. A. Cordell, J. M. Pezzuto, A. D. Kinghorn, *Phytochemistry* 1994, 37, 1659; C.-Y. Chen, F.-R. Chang, Y.-C. Shih, T.-J. Hsieh, Y.-C. Chia, H.-Y. Tseng, H.-C. Chen, S.-J. Chen, M.-C. Hsu, Y.-C. Wu, J. Nat. Prod. 2000, 63, 1475.
- [6] P. Tuchinda, B. Munyoo, M. Pohmakotr, P. Thinapong, S. Sophasan, T. Santisuk, V. Reutrakul, J. Nat. Prod. 2006, 69, 1728.
- [7] V. Sekhar, D. K. Reddy, V. Suresh, D. C. Babu, Y. Venkateswarlu, Tetrahedron Lett. 2010, 51, 946.
- [8] J. S.Yadav, B. Ganganna, D. C. Bhunia, Synthesis 2012, 44, 1365; G. Sabitha, A. Y. Reddy, J. S. Yadav Tetrahedron Lett. 2012, 53, 5624; B. P. Reddy, T. Pandurangam, J. S. Yadav, B. V. S. Reddy, Tetrahedron Lett. 2012, 53, 5749; J. S. Yadav, B. Thirupathaiah, V. K. Singh, V. Ravishashidhar, Tetrahedron: Asymmetry 2012, 23, 931; J. S. Yadav, S. S. Mandal, Tetrahedron Lett. 2011, 52, 5747; J. S. Yadav, S. S. Mandal, J. S. S. Reddy, P. Srihari, Tetrahedron 2011, 67, 4620; J. S. Yadav, J. S. S. Reddy, S. S. Mandal, P. Srihari, Synlett 2010, 2636; P. Srihari, B. Kumaraswamy, G. M. Rao, J. S. Yadav, Tetrahedron: Asymmetry 2010, 21, 106; P. Srihari, G. M. Rao, R. S. Rao, J. S.Yadav, Synthesis 2010, 2407; P. Srihari, E. V. Bhasker, A. B. Reddy, J. S. Yadav, Tetrahedron Lett. 2009, 50, 2420.
- [9] J. S. Yadav, B. Madhavarao, K. S. Rao, Synlett 2009, 3179; J. S. Yadav, B. M. Rao, K. S. Rao, Tetrahedron: Asymmetry 2009, 20, 1725; J. S. Yadav, B. M. Rao, K. S. Rao, B. V. S. Reddy, Synlett 2008, 1039; J. Zhu, D. Ma, Angew. Chem., Int. Ed. 2003, 42, 5348.
- [10] W. Wu, Y. Wu, J. Org. Chem. 1993, 58, 3586.
- [11] W. C. Still, C. Gennari, Tetrahedron Lett. 1983, 24, 4405.
- [12] Y. Jagadeesh, J. S. Reddy, B. V. Rao, J. L. Swarnalatha, *Tetrahedron* 2010, 66, 1202; K.-G. Liu, S. Yan, Y.-L. Wu, Z.-J. Yao, J. Org. Chem. 2002, 67, 6758.

Received June 6, 2013