Stereoselective Synthesis of (Z)- and (E)-Allyl Aryl Sulfides and Selenides from Baylis-Hillman Acetates under Neutral Conditions Using β Cyclodextrin in Water

by Konkala Karnakar, Katla Ramesh, Sabbavarapu Narayana Murthy, and Yadavalli Venkata Durga Nageswar*

Medicinal Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500607, India (phone: + 91-40-27191654; e-mail: dryvdnageswar@gmail.com)

Abstract

The first example of the stereoselective synthesis of (Z) - and (E)-allyl aryl sulfides and selenides from Baylis-Hillman acetates under neutral conditions in $\mathrm{H}_{2} \mathrm{O}$ by supramolecular catalysis involving β cyclodextrin is reported. β-Cyclodextrin can be recovered and reused. The reaction is very efficient in providing allyl aryl sulfides and selenides in good-to-excellent yields with clean reaction profiles under mild reaction conditions.

Introduction. - Cyclodextrins [1] (CDs) are cyclic oligosaccharides possessing hydrophobic cavities, which bind substrates selectively and catalyze chemical reactions with high selectivity. Supramolecular catalysis involves the reversible formation of host-guest complexes through non-covalent bonding as seen in enzymes. Earlier, we reported [2] an environmentally benign synthesis of allyl aryl sulfone derivatives by the reaction of sodium benzenesulfinates, which are $\mathrm{H}_{2} \mathrm{O}$-soluble, with Baylis-Hillman acetates in $\mathrm{H}_{2} \mathrm{O}$. In continuation of our interest in Baylis-Hillman chemistry and to support the concept of sustainability, herein, we report a new protocol to access allyl aryl sulfides/allyl aryl selenides by the addition of $\mathrm{H}_{2} \mathrm{O}$-insoluble benzenethiol/ benzeneselenol to Baylis-Hillman acetates under biomimetic conditions using β cyclodextrin in $\mathrm{H}_{2} \mathrm{O}$ as a solvent at $50-55^{\circ}$ (Scheme). Here, β-CD acts as a supramolecular promoter to facilitate the reaction in $\mathrm{H}_{2} \mathrm{O}$. The H -bonding between SH and OH group of β-CD renders the $\mathrm{S}-\mathrm{H}$ bond weaker, inherently enhancing the nucleophilicity of the S-atom.

Scheme. Synthesis of Allyl Aryl Sulfides/Selenides from Baylis-Hillman Acetates and Benzenethiol/ Benzeneselenol

$R^{1}=$ Aromatic, heteroaromatic, aliphatic
(Z)-isomer $\mathrm{R}^{2}=$ COOMe, COOEt
$\mathrm{R}^{2}=\mathrm{COOMe}, \mathrm{COOEt}, \mathrm{CN}$
(E)-isomer $\mathrm{R}^{2}=\mathrm{CN}$
$X=S, S e$

Results and Discussion. - In our initial efforts toward the optimization of the present work, Baylis-Hillman acetate $\mathbf{1}$ was reacted with benzenethiol (2) using β-CD in $\mathrm{H}_{2} \mathrm{O}$ at room temperature. Here, the reaction yielded the corresponding allyl sulfide in 54% yield. The same reaction under conventional heating conditions proceeded much better to afford allyl sulfide in 89% in $5-6$ h (Table 1, Entry 1).

Table 1. Stereoselective Synthesis of (Z)- and (E)-Allyl Aryl Sulfides Using β-CD ${ }^{\mathrm{a}}$)

(E)-isomer $\mathrm{R}^{2}=\mathrm{CN}$

Entry	R^{1}	R^{2}	Product 3	Time $[\mathrm{h}]$	Yield $\left.[\%]^{\mathrm{b}}\right)$
1	Ph	COOMe	$\mathbf{3 a}(Z)$	5	89
2	$4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	COOEt	$\mathbf{3 b}(Z)$	5	87
3	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	COOEt	$\mathbf{3 c}(Z)$	5	84
4	$4-\mathrm{Cl}_{6}-\mathrm{C}_{4}$	COOEt	$\mathbf{3 d}(Z)$	5	81
5	$3-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	COOMe	$\mathbf{3 e}(Z)$	5.5	70
6	Pr	COOEt	$\mathbf{3 f}(Z)$	6	72
7	Bu	COOMe	$\mathbf{3 g}(Z)$	6	68
8	Ph	CN	$\mathbf{3 h}(E)$	5	82
9	$4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	CN	$\mathbf{3 i}(E)$	5	76
10	$4-\mathrm{EtO}-\mathrm{C}_{6} \mathrm{H}_{4}$	CN	$\mathbf{3 j}(E)$	5	78
11	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	CN	$\mathbf{3 k}(E)$	5	78
12	Furan-2-yl	CN	$\mathbf{3 l}(E)$	5.5	71

${ }^{\text {a }}$) Reaction conditions: Baylis-Hillman acetate $(\mathbf{1} ; 1.0 \mathrm{mmol})$, benzenethiol $(\mathbf{2} ; 1.5 \mathrm{mmol}), \beta$-CD $(1.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml}), 50-55^{\circ}, 5-6 \mathrm{~h} .{ }^{\text {b }}$) Yield of the isolated allyl sulfides.

After having optimized the reaction conditions, various Baylis-Hillman acetates, 1, were synthesized starting from ethyl acrylate or acrylonitrile, and substituted aldehydes [3]. These Baylis-Hillman acetates were reacted under optimized conditions to yield corresponding substituted allyl sulfides. In the present study, it was observed that Baylis-Hillman acetates 1 derived from benzylaldehydes with $4-\mathrm{MeO}, 4-\mathrm{Cl}$, and 4-F groups afforded substituted allyl sulfides in good yields (Table 1, Entries 2-4), when compared with Baylis-Hillman acetates bearing a $3-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$ group (Table 1, Entry 5). In the case of Baylis-Hillman acetates derived from aliphatic aldehydes, the corresponding allyl sulfides are obtained in moderate yields (Table 1, Entries 6 and 7).

The scope of this protocol was studied further by replacing benzenethiol (2) by benzeneselenol (4). The corresponding allyl selenides were obtained in good yields (Table 2). Baylis-Hillman adducts have proved to be very useful multifunctional synthons in organic chemistry, especially for the stereoselective construction of trisubstituted alkenes.

Table 2. Stereoselective Synthesis of (Z)- and (E)-Allyl Aryl Selenides Using β-CD ${ }^{\mathrm{a}}$)

(E)-isomer $\mathrm{R}^{2}=\mathrm{CN}$

Entry	R^{1}	R^{2}	Product $\mathbf{5}$	Time $[\mathrm{h}]$	Yield [\%] $\left.{ }^{\text {b }}\right)$
1	Ph	COOMe	$\mathbf{5 a}(Z)$	5	88
2	$4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	COOEt	$\mathbf{5 b}(Z)$	5	85
3	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	COOEt	$\mathbf{5 c}(Z)$	5	82
4	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	COOEt	$\mathbf{5 d}(Z)$	5	81
5	$3-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	COOMe	$\mathbf{5 e}(Z)$	5.5	68
6	Pr	COOEt	$\mathbf{5 f}(Z)$	6	70
7	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	CN	$\mathbf{5 g}(E)$	5	75

${ }^{\text {a }}$) Reaction conditions: Baylis-Hillman acetate ($\mathbf{1} ; 1.0 \mathrm{mmol}$), benzeneselenol ($\mathbf{2} ; 1.5 \mathrm{mmol}$), β-CD $(1.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml}), 50-55^{\circ}, 5-6 \mathrm{~h} .{ }^{\text {b }}$) Yield of the isolated allyl selenides.

The allylic alcohol functionality is converted to its corresponding acetate to enhance the nucleophilic character and liability to facilitate the formation of (E) - and (Z)-trisubstituted alkenes. It was observed that (Z)-isomer was the only product formed with Baylis-Hillman acetates containing an ester moiety, whereas nitrilecontaining Baylis-Hillman acetates yielded (E)-isomers as the predominant products. The configurations of the products were assigned on the basis of ${ }^{1} \mathrm{H}$-NMR spectroscopy and by comparison with the literature data [4].

In all the cases, the reaction efficiently proceeded at $50-55^{\circ}$ without the need of any acid or base catalyst, and in almost quantitative yields and higher selectivities.

To demonstrate the efficacy and recyclability of $\beta-\mathrm{CD}$, after completion of the reaction, the mixture was allowed to cool to 0°, and β-CD was filtered, washed with icecold water, and dried under reduced pressure. The recovered β-CD was re-used with the same substrates and found to be effective even after three cycles (Table 3).

Table 3. Recyclability of $\beta-C D^{\mathrm{a}}$)

Cycle	Yield [\%]	Catalyst recovered [\%]
Native	89	90
1	86	88
2	84	85
3	81	82

${ }^{\text {a }}$) All reactions were carried out with methyl 2-[(acetoxy)(phenyl)methyl]acrylate (1a; 1.0 mmol), benzenethiol $(\mathbf{2} ; 1.5 \mathrm{mmol})$, and $\beta-\mathrm{CD}(1.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$.

Conclusions. - We have developed an environmentally benign procedure for the transformation of Baylis-Hillman acetates into trisubstituted alkenes using $\mathrm{H}_{2} \mathrm{O}$ as reaction medium under supramolecular conditions. β-Cyclodextrin, apart from being non-toxic, is also considered as metabolically safe and environmentally benign. This straightforward methodology may find widespread applications in synthetic organic and medicinal chemistry.

We thank CSIR, New Delhi, India, for fellowships to K. K. and S. N. M., and U. G. C. for fellowship to $K . R$.

Experimental Part

General. TLC: Precoated silica-gel plates $60 \quad F_{254}\left(\mathrm{SiO}_{2} ; 0.2-\mathrm{mm}\right.$ layer, E. Merck). Column chromatography (CC): $\mathrm{SiO}_{2}, 60-120$ mesh. M.p.: Fischer-Johns apparatus; uncorrected. IR Spectra: Thermo Nicolet Nexus 670 FT-IR spectrophotometer; in KBr ; \tilde{v} in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra: Bruker Avance 300, and Innova 400 MHz instrument; in $\mathrm{CDCl}_{3} ; \delta$ in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, J in Hz. ESI-MS: Finnigan MAT 1020 mass spectrometer; in m / z.

General Procedure for the Synthesis of Allyl Aryl Sulfides/Selenides: β-CD (1.0 mmol) was dissolved in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$ by warming to $50-55^{\circ}$, until a clear soln. was obtained. Then, Baylis-Hillman acetate $(1.0 \mathrm{mmol})$ was added portionwise, followed by benzenethiol or benzeneselenol ($\mathbf{1} \mathrm{or} \mathbf{4}$, resp. 1.5 mmol), resp. The mixture was stirred at $50-55^{\circ}$ until the reaction was complete (as monitored by TLC). The product was extracted with AcOEt , and the extract was filtered. The org. layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed under reduced pressure. The crude product was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}(60-\right.$ 120 mesh; AcOEt/hexane 1:9). The aq. layer was cooled to 5° to recover β-CD by filtration.

Methyl (2Z)-3-Phenyl-2-[(phenylsulfanyl)methyl]prop-2-enoate (3a; Table 1, Entry 1): IR (KBr): 3058, 2948, 1714. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.76(s, 3 \mathrm{H}) ; 4.02(s, 2 \mathrm{H}) ; 7.10-7.42(m, 10 \mathrm{H}) ; 7.75(s$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 167.6; 141.5; 134.7; 132.5; 130.8; 129.4; 129.0; 128.9; 128.6; 128.2; 126.7; 52.3; 32.2. ESI-MS: $285\left([M+\mathrm{H}]^{+}\right)$.

Ethyl (2Z)-3-(4-Methoxyphenyl)-2-[(phenylsulfanyl)methyl]prop-2-enoate (3b; Table 1, Entry 2): IR (KBr): 2932, 1705, 1603. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.30(t, J=6.9,3 \mathrm{H}) ; 3.78(s, 3 \mathrm{H}) ; 4.07(s, 2 \mathrm{H})$; $4.24(q, J=6.9,2 \mathrm{H}) ; 6.87(d, J=8.6,2 \mathrm{H}) ; 7.12-7.29(m, 3 \mathrm{H}) ; 7.39(d, J=8.6,2 \mathrm{H}) ; 7.44(d, J=8.6,2 \mathrm{H})$; $7.73(s, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.1 ; 160.1 ; 141.0 ; 136.1 ; 131.3 ; 130.2 ; 128.6 ; 127.0 ; 126.3$; 125.7; 113.9; 60.8; 55.0; 32.0; 14.0. ESI-MS: $329\left([M+\mathrm{H}]^{+}\right)$.

Ethyl (2Z)-3-(4-Fluorophenyl)-2-[(phenylsulfanyl)methyl]prop-2-enoate (3c; Table 1, Entry 3): IR (KBr): 3064, 2982, 1710. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.31(t, J=6.7,3 \mathrm{H}) ; 3.99(s, 2 \mathrm{H}) ; 4.25(q, J=6.7$, $2 \mathrm{H}) ; 7.01(t, J=8.3,2 \mathrm{H}) ; 7.14-7.29(m, 3 \mathrm{H}) ; 7.32-7.42(m, 4 \mathrm{H}) ; 7.69(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 166.9 ; 164.5 ; 161.2 ; 139.9 ; 131.5 ; 131.4 ; 131.0 ; 128.9 ; 126.8 ; 115.8 ; 115.5 ; 61.8 ; 32.2 ; 14.2$. ESI-MS: $317\left([M+\mathrm{H}]^{+}\right)$.

Ethyl (2Z)-3-(4-Chlorophenyl)-2-[(phenylsulfanyl)methyl]prop-2-enoate (3d; Table 1, Entry 4): IR (neat): 3059, 2982, 1710. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.29(t, J=6.9,3 \mathrm{H}) ; 3.94(s, 2 \mathrm{H}) ; 4.23(q, J=6.9$, $2 \mathrm{H}) ; 7.09-7.40(\mathrm{~m}, 9 \mathrm{H}) ; 7.63(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 166.1 ; 144.9 ; 144.3 ; 136.2 ; 132.1$; 130.5; 129.6; 128.8; 128.4; 121.8; 61.6; 21.5; 14.0. ESI-MS: $333\left([M+\mathrm{H}]^{+}\right)$.

Methyl (2Z)-3-(3-Nitrophenyl)-2-[(phenylsulfanyl)methyl]prop-2-enoate (3e; Table 1, Entry 5): IR (KBr): 3070, 2924, 1718, 1530. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $3.84(s, 3 \mathrm{H}) ; 3.92$ ($s, 2 \mathrm{H}$); 7.14-7.24 (m, $3 \mathrm{H}) ; 7.28-7.39(m, 2 \mathrm{H}) ; 7.49(d, J=7.5,1 \mathrm{H}) ; 7.56(d, J=7.5,1 \mathrm{H}) ; 7.67(s, 1 \mathrm{H}) ; 8.13(d, J=7.5,2 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 166.7 ; 147.2 ; 138.7 ; 137.5 ; 136.4 ; 134.4 ; 130.0 ; 128.9 ; 128.5 ; 125.3 ; 122.8$; 121.5; 52.1; 32.1. ESI-MS: $330\left([M+\mathrm{H}]^{+}\right)$.

Ethyl (2Z)-2-[(Phenylsulfanyl)methyl]hex-2-enoate (3f; Table 1, Entry 6): IR (KBr): 3010, 2965, $2815,1610 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.86(t, J=7.5,3 \mathrm{H}) ; 1.22-1.39(m, 5 \mathrm{H}) ; 1.93(q, J=7.5,2 \mathrm{H})$; $3.75(s, 2 \mathrm{H}) ; 4.19(q, J=7.5,2 \mathrm{H}) ; 6.76(t, J=7.5,1 \mathrm{H}) ; 7.15-7.29(m, 3 \mathrm{H}) ; 7.39(d, J=7.5,2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.1 ; 144.7 ; 136.1 ; 132.2 ; 128.7 ; 126.9 ; 60.5 ; 31.5 ; 30.6 ; 22.0 ; 14.4 ; 14.0$. ESIMS: $265\left([M+\mathrm{H}]^{+}\right)$.

Methyl (2Z)-2-[(Phenylsulfanyl)methyl]hept-2-enoate (3g; Table 1, Entry 7): IR (KBr): 3010, 2965, 1595. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.86(t, J=7.5,3 \mathrm{H}) ; 1.20-1.28(m, 4 \mathrm{H}) ; 1.94(q, J=7.5,2 \mathrm{H}) ; 3.74(s$, $3 \mathrm{H}) ; 3.77(s, 2 \mathrm{H}) ; 6.79(t, J=7.5,1 \mathrm{H}) ; 7.17-7.32(m, 3 \mathrm{H}) ; 7.41(d, J=6.0,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 166.5 ; 144.9 ; 136.4 ; 131.3 ; 129.2 ; 127.7 ; 126.2 ; 52.2 ; 31.8 ; 30.2 ; 29.2 ; 22.2 ; 14.2$. ESI-MS: 265 $\left([M+\mathrm{H}]^{+}\right)$.
(2E)-3-Phenyl-2-[(phenylsulfanyl)methyl]prop-2-enenitrile (3h; Table 1, Entry 8): IR (KBr): 3012, 2928, 2215, 1591. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.60-7.18(m, 10 \mathrm{H}) ; 6.58(s, 1 \mathrm{H}) ; 3.74(s, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 144.1; 136.2; 134.5; 130.6; 129.0; 128.4; 125.9; 118.6; 106.2; 31.2. ESI-MS: 274 ([$M+$ $\mathrm{Na}]^{+}$.
(2E)-3-(4-Methylphenyl)-2-[(phenylsulfanyl)methyl]prop-2-enenitrile (3i; Table 1, Entry 9): IR (KBr): 3025, 2923, 2213, 1608. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.34(s, 3 \mathrm{H}) ; 3.75(s, 2 \mathrm{H}): 6.56(s, 1 \mathrm{H})$; $7.02-7.31(m, 6 \mathrm{H}) ; 7.34-7.53(m, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 145.7 ; 144.3 ; 140.5 ; 132.7 ; 131.8$; 129.3; 128.9; 128.6; 127.7; 117.7; 106.3; 41.0; 21.4. ESI-MS: $288\left([M+\mathrm{Na}]^{+}\right)$.
(2E)-3-(4-Ethoxyphenyl)-2-[(phenylsulfanyl)methyl]prop-2-enenitrile (3j; Table 1, Entry 10): IR (KBr): 3021, 2925, 2216, 1615. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.39(t, J=6.7,3 \mathrm{H}) ; 3.67(s, 2 \mathrm{H}) ; 3.99(q$, $J=6.7,2 \mathrm{H}) ; 6.52(s, 1 \mathrm{H}) ; 6.80(d, J=9.6,2 \mathrm{H}) ; 7.18-7.28(m, 3 \mathrm{H}) ; 7.38(d, J=6.7,2 \mathrm{H}) ; 7.53(d, J=8.6$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 160.5 ; 144.0 ; 132.6 ; 130.4 ; 128.9 ; 127.6 ; 125.4 ; 114.5 ; 104.2 ; 63.3 ; 41.0$; 14.7. ESI-MS: $296\left([M+\mathrm{H}]^{+}\right)$.
(2E)-3-(4-Chlorophenyl)-2-[(phenylsulfanyl)methyl]prop-2-enenitrile (3k; Table 1, Entry 11): IR (KBr): 3060, 2923, 2215, 1589. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.71(s, 2 \mathrm{H}) ; 6.55(\mathrm{~s}, 1 \mathrm{H}) ; 7.21-7.46$ (m, $7 \mathrm{H}) ; 7.49(d, J=8.4,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 144.5 ; 143.1 ; 132.9 ; 132.3 ; 130.1 ; 129.8 ; 129.1$; 129.0; 128.0; 117.6; 108.2; 41.0. ESI-MS: $286\left([M+\mathrm{H}]^{+}\right)$.
(2E)-3-(Furan-2-yl)-2-[(phenylsulfanyl)methyl]prop-2-enenitrile (31; Table 1, Entry 12): IR (KBr): 3015, 2975, 2210. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.11(s, 2 \mathrm{H}) ; 6.52(d, J=3.7,1 \mathrm{H}) ; 6.77(s, 1 \mathrm{H}) ; 7.16-7.27$ $(m, 3 \mathrm{H}) ; 7.42-7.49(m, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 150.6 ; 144.1 ; 142.3 ; 135.9 ; 130.0 ; 128.5 ; 124.4$; 117.3; 111.8; 109.5; 108.4; 41.3. ESI-MS: $242\left([M+\mathrm{H}]^{+}\right)$.

Methyl (2Z)-3-Phenyl-2-[(phenylselanyl)methyl]prop-2-enoate (5a; Table 2, Entry 1): IR (KBr): 3058, 2950, 1710. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.12(\mathrm{~s}, 2 \mathrm{H}) ; 3.82(\mathrm{~s}, 3 \mathrm{H}) ; 7.11-7.48(\mathrm{~m}, 10 \mathrm{H}) ; 7.69(s$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 167.4; 140.2; 134.9; 132.7; 130.8; 129.2; 129.0; 128.7; 128.5; 127.7; 126.5; 52.1; 26.2. ESI-MS: $333\left([M+\mathrm{H}]^{+}\right)$.

Ethyl (2Z)-3-(4-Methoxyphenyl)-2-[(phenylselanyl)methyl]prop-2-enoate (5b; Table 2, Entry 2): IR (KBr): 2923, 1705, 1605. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.31(t, J=6.7,3 \mathrm{H}) ; 3.80(s, 3 \mathrm{H}) ; 4.07(s, 2 \mathrm{H})$; $4.23(q, J=6.7,2 \mathrm{H}), 6.83(d, J=9.0,2 \mathrm{H}) ; 7.18-7.25(m, 3 \mathrm{H}) ; 7.35(d, J=8.3,2 \mathrm{H}) ; 7.52-7.56(m, 2 \mathrm{H})$; $7.61(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.3 ; 160.0 ; 139.6 ; 133.9 ; 131.4 ; 130.3 ; 128.9 ; 127.4 ; 127.3$; 114.0; 60.9; 55.1; 25.2; 14.3. ESI-MS: $377\left([M+\mathrm{H}]^{+}\right)$.

Ethyl (2Z)-3-(4-Fluorophenyl)-2-[(phenylselanyl)methyl]prop-2-enoate (5c; Table 2, Entry 3): IR (KBr): 3064, 2982, 1710. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.34(t, J=6.7,3 \mathrm{H}) ; 2.14(s, 2 \mathrm{H}) ; 4.24(q, J=6.7$, $2 \mathrm{H}) ; 6.96(t, J=8.3,2 \mathrm{H}) ; 7.16-7.28(m, 5 \mathrm{H}) ; 7.50(d, J=8.3,2 \mathrm{H}) ; 7.56(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 166.7; $161.5 ; 139.7 ; 132.0 ; 131.0 ; 130.6 ; 130.2 ; 128.9 ; 126.6 ; 115.5 ; 61.8 ; 26.1 ; 14.0$. ESI-MS: 365 $\left([M+\mathrm{H}]^{+}\right)$.

Ethyl (2Z)-3-(4-Chlorophenyl)-2-[(phenylselanyl)methyl]prop-2-enoate (5d; Table 2, Entry 4): IR $(\mathrm{KBr}): 2930,1710,1610 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.33(t, J=7.1,3 \mathrm{H}), 3.99(s, 2 \mathrm{H}) ; 4.26(q, J=7.1$, $2 \mathrm{H}) ; 7.18-7.31(m, 7 \mathrm{H}) ; 7.51(d, J=7.7,2 \mathrm{H}) ; 7.58(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 166.6 ; 141.0$; $132.9 ; 132.5 ; 130.8 ; 129.4 ; 128.9 ; 128.8 ; 127.5 ; 61.5 ; 26.5 ; 14.0$. ESI-MS: $381\left([M+\mathrm{H}]^{+}\right)$.

Methyl (2Z)-3-(3-Nitrophenyl)-2-[(phenylselanyl)methyl]prop-2-enoate (5e; Table 2, Entry 5): IR (KBr): 3070, 2924, 1715, $1510 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.84(s, 3 \mathrm{H}) ; 3.95(\mathrm{~s}, 2 \mathrm{H}) ; 7.12-7.26$ (m, $3 \mathrm{H}) ; 7.40-7.49(m, 4 \mathrm{H}) ; 7.58(s, 1 \mathrm{H}) ; 8.03(s, 1 \mathrm{H}) ; 8.09(d, J=6.7,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $166.9 ; 148.2 ; 136.4 ; 136.2 ; 135.2 ; 134.6 ; 132.4 ; 131.4 ; 129.3 ; 128.9 ; 128.0 ; 123.7 ; 122.9 ; 52.4 ; 24.5$. ESI-MS: $378\left([M+\mathrm{H}]^{+}\right)$.

Ethyl (2Z)-2-[(Phenylselanyl)methyl]hex-2-enoate (5f; Table 2, Entry 6): IR (KBr): 3010, 2965, $2815,1710 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.87(t, J=7.5,3 \mathrm{H}) ; 1.21-1.32(m, 5 \mathrm{H}) ; 1.63(q, J=7.5,2 \mathrm{H})$;

REFERENCES

[1] S. N. Murthy, B. Madhav, A. V. Kumar, Y. V. D. Nageswar, Tetrahedron 2009, 65, 5251; B. Madhav, S. N. Murthy, V. P. Reddy, K. R. Rao, Y. V. D. Nageswar, Tetrahedron Lett. 2009, 50, 6025; S. N. Murthy, B. Madhav, V. P. Reddy, Y. V. D. Nageswar, Tetrahedron Lett. 2010, 51, 3649; J. Shankar, K. Karnakar, B. Srinivas, Y. V. D. Nageswar, Tetrahedron Lett. 2010, 51, 3938; S. N. Murthy, B. Madhav, Y. V. D. Nageswar, Tetrahedron Lett. 2010, 51, $5252 ;$ K. Ramesh, S. N. Murthy, Y. V. D. Nageswar, Tetrahedron Lett. 2011, 52, 2362.
[2] K. Karnakar, J. Shankar, S. N. Murthy, Y. V. D. Nageswar, Helv. Chim. Acta 2011, 94, 875.
[3] D. Basavaiah, A. J. Rao, T. Satyanarayana, Chem. Rev. 2003, 103, 811-891; V. Singh, S. Batra, Tetrahedron 2008, 64, 4511-4574; V. Declerck, J. Martinez, F. Lamaty, Chem. Rev. 2009, 109, 1-48; D. Basavaiah, P. D. Rao, R. S. Hyma, Tetrahedron 1996, 52, 8001-8062.
[4] P. G. Baraldi, M. Guarneri, G. P. Pollini, D. Simoni, A. Barco, S. Benetti, J. Chem. Soc., Perkin Trans. 1 1984, 2501; K. Tanaka, N. Yamagishi, R. Tanikaga, A. Kaji, Bull. Chem. Soc. 1979, 52, 3619; I. Minami, M. Yahara, I. Shimizu, J. Tsuji, J. Chem. Soc., Chem. Commun. 1986, 118; M. Oda, A. Yamamura, T. Watabe, Chem. Lett. 1979, 1427; I. Matsuda, H. Okada, Y. Izumi, Bull. Chem. Soc. 1983, 56, 528; G. Boche, K. Buckl, D. Martens, D. R. Schneider, Tetrahedron Lett. 1979, 4967.

