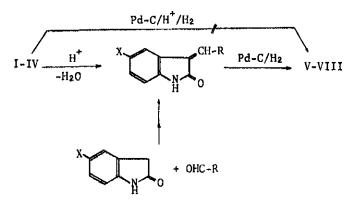

PHOTODEHYDROXYLATION OF SOME 3-HYDROXYOXINDOLES¹

Noboru Shoji, Yoshikazu Kondo*, and Tsunematsu Takemoto Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

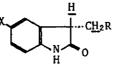
Photoreduction of 3-substituted 3-hydroxyoxindoles I-IV in the presence of sodium hydrosulfite led to loss of the 3-hydroxyl group. Irradiation at longer wavelengths ($\lambda > 3000$ Å) did not cause this photodehydroxylation.

While reduction of simple 3-hydroxyoxindoles usually gave the corresponding kindoles, 3-alkyl-3-hydroxyoxindoles sometimes produced the 3-alkylindoles together with the oxindoles.² Generalization on the reduction of the 3-hydroxyoxindoles was so far unknown. We now wish to report that irradiation of some 3-substituted 3-hydroxyoxindoles I-IV in aqueous solution in the presence of sodium hydrosulfite resulted in dehydroxylation of the 3-hydroxyl group (Scheme 1).


Scheme 1.

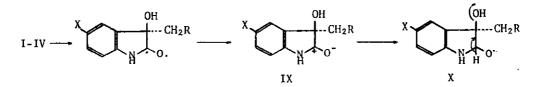
-51-

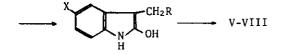
In a typical run, a 10^{-2} M aqueous solution of 3-substituted 3-hydroxyoxindole in the presence of 10^{-1} M sodium hydrosulfite was irradiated at ambient temperature with a 450 W medium-pressure lamp (Ushio UM-452, 1.9 W at 2894 Å) equipped with a Vycor filter. After irradiation for 10 h, most of the starting material disappeared by monitoring silica gel thin-layer chromatography. Isolation by column chromatography gave a major photoproduct³ (25-43% yield) which was confirmed to be 3-substituted oxindole (V-VIII) by direct comparison with an independently prepared sample in the following manner (Scheme 2).



Irradiation with light above 3000 Å did not cause dehydroxylation. Nmr data and melting points of these products were shown in Table I. The oxindole (V-VIII) was converted to the corresponding 3-hydroxyoxindole by aerial oxidation.⁴ When sodium borohydride⁵ was used in the place of sodium hydrosulfite, irradiation of the 3-hydroxyoxindole (I-IV) produced a mixture of several unidentified substances.

Addition of the low energy triplet-quencher such as $blacetyl^6$ gave no apparent effect on this photodehydration. A reasonable mechanism involve a reduced intermediate X via zwitterion IX as shown in Scheme 3,


-52-



	mp	^б сн	^б снн	^б сн <u>н</u>
V	99-101°	3.86 (q, J ₁ =4.2 Hz, J ₂ =8.2 Hz)	2.83 (q, J ₁ =8.2 Hz, J ₂ =17.5 Hz)	3.27 (q, J ₁ =4.2 Hz, J ₂ =17.5 Hz)
VI	175°(decomp.)	3.69 (q, J ₁ =4.7 Hz, J ₂ =8 Hz)	2.43 (q, J ₁ =8 Hz, J ₂ =15.3 Hz)	2.87 (q, J1≠4.7 Hz, J2=15.3 Hz)
VII	130°	4.16 (q, J ₁ =5.2 Hz, J ₂ =9 Hz)	3.12 (q, J₁=9 Hz, J₂≃15 Hz)	3.64 (q, J ₁ =5.2 Hz, J ₂ =15 Hz)
VIII	170-172° .	4.15 (q, J ₁ =5 Hz, J ₂ =8.7 Hz)	3.08 (q, J ₁ =8.7 Hz, J ₂ =15 Hz)	3.60 (q, J ₁ =5 Hz, J ₂ =15 Hz)

 \star Nmr spectra were recorded on a Hitachi R-20 spectrometer (60 MHz) and the chemical shifts are in ppm from TMS.

REFERENCES

- 1 On Photoreduction. Part V. Part IV: Tetrahedron, 1972, 28, 797.
- 2 B. Robinson, Chem. Rev., 1969, 69, 786.
- 3 All compounds gave satisfactory elemental analyses.
- 4 L. P. Julian and J. Pikl, J. Amer. Chem. Soc., 1935, 57, 539; S. Toyoshima, N. Hirose, K. Yamatsu, and S. Sohda, Yakugaku Zasehi, 1970, 90, 1524; N. Hirose, S. Sohda, and S. Toyoshima, Yakugaku Zasehi, 1971, 91, 1323.
- 5 Cf. Y. Kondo, J. Synth. Org. Chem. Japan, 1971, 29, 1109.
- 6 W. A. Noyes, Jun., G. B. Porter, and J. E. Jolley, Chem. Rev., 1958, 52, 49. Received, 22nd November, 1973