
SYNTHESIS AND STRUCTURE

OF MESO-SUBSTITUTED PORPHYRIN METAL COMPLEXES

Hisanobu Ogoshi, Ei-ichi Watanabe, Hiroshi Sugimoto, Satoshi Nishimura, and Zen-ichi Yoshida Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606

The synthesis of meso-substituted octaethylporphyrin is reported: nitration of octaethylporphyrin with $Zn(NO_3)_2$, $6H_2O$ yields mono-, di-, tri-, and tetranitro-octaethylporphyrinatozinc(II) and formylation of copper, nickel and palladium porphyrin complexes yields monoformyl-(Cu^{II} , Ni^{II}, and Pd^{II}) and diformyl(Cu^{II})octa-ethylporphyrin metal complexes. The exclusive α , f,-orientation for dinitro- and diformylporphyrins is proved on the basis of n.m.r. spectra of the free bases obtained by demetallation of the complexes. Specific α , f,-orientation of octa-ethylporphyrin complexes has been interpreted in terms of relative stability of disubstituted porphyrin metal complexes (α , β and α , f). The strain energy of α , f-disubstituted complex(D_{2h}) would be less than that of the α , β -disubstituted complex(D_{2h}). The trend of the substitution reaction of porphyrin diacid will be compared with present results.

Octaethylporphyrin - M^{II}