HETEROCYCLES, Vol. 2, No. 2, 1974

N-ALKYLATION OF IMIDAZOLES, PYRIMIDINES, AND PURINES WITH TRIALKYL PHOSPHATES

Kiyoshi Yamauchi, Masahiro Hayashi, and Masayoshi Kinoshita Department of Applied Chemistry, Osaka City University, Sumiyoshi, Osaka

Trialkyl phosphate has been shown to be a convenient alkylating agent for nitrogen heterocycles. Thus, upon heating with a trialkyl phosphate, imidazole, benzimidazole, pyrazole, 1,2,4-triazole, and benzotriazole were converted easily to the corresponding N-alkyl derivatives in 45 - 90 % yields. Predominant alkylation at the 1-position was observed in both triazoles.

Thymine, uracil, and cytosine underwent substitution at the 1- or at both the 1- and 3-positions to give 1-alkyl or 1,3-dialkyl derivatives quantitatively, depending on the quantity and the nature of the phosphate used.

Concerning alkylation of purines, xanthine generated 3,7-dialkyl and 1,3,7trialkyl derivatives; theobromine underwent only methylation to give caffeine; and theophylline afforded easily 7-alkyl derivatives quantitatively. Preferential alkylation at the 3-position took place in adenine to produce 3-alkyladenine.