HETEROCYCLES, Vol. 2, No. 3, 1974

THE COUMARIN FROM EKEBERGIA SENEGALENSIS: A REVISION

Pietro Venturella, Aurora Bellino, and Franco Piozzi^{*} Institute of Organic Chemistry, University of Palermo 20, via Archirafi - 90123 Palermo (Italy)

> The structure of the coumarin from <u>E.senegalensis</u> is revised to 4-methoxy-5-methylcoumarin (II).

Bevan and Ekong¹ isolated from the heartwood of <u>Ekebergia senegalensis</u> A.Juss (family Meliaceae) a new coumarin, m.p. 165°, to which they attributed the structure of 4-methyl-8-methoxycoumarin (I). However, their statement seems to rest on not unequivocal results. Moreover, they claimed to have synthesized in low yield a product identified with the natural coumarin solely on the basis of its R_f values on TLC: neither the m.p. nor spectral data were reported for the synthetic product.

Recently² we had the opportunity of suggesting an interpretation of the NMR spectra that allows to distinguish between 4-methyl- and 4-methoxycoumarins. After our results, structure (I) was untenable for the coumarin from <u>E.senegalensis</u>. In fact, the lack of allylic coupling between H-3 and the methyl group, and the reported chemical shift of H-3 (5.65 δ) were not consistent with (I) and pointed to a 4-methoxycoumarin structure.

A first support to our hypothesis came from the synthesis of (I) through a different pathway. Condensation³ of ethyl acetoacetate with pyrocatechol gave 4-methyl-8-hydroxycoumarin, m.p. 188°-190° (from methanol, in very low yield; treatment with dimethyl sulphate and potassium carbo-

-345-

nate in acetone yielded (I), m.p. $137^{\circ}-138^{\circ}$ (from methanol), quite different from the natural coumarin described by Bevan and Ekong. In particular, the NMR spectrum of (I) showed the allylic coupling and the downfield shift of H-3 (6.26 δ) required by this structure.

The NMR spectra of some coumarins^{4,5} report the chemical shift of Ar-CH₃ at 2.28-2.40 δ when the methyl group is on C-6, C-7 or C-8: the few cases we know for 5-CH₃ when OCH₃ or other OR groups are on C-4 are kotanin⁶ (5-CH₃ at 2.73 δ), siderin² (5-CH₃ at 2.62 δ) and some products reported by Bohlmann⁷ (5-CH₃ at 2.52-2.62 δ). Inversely, a 4-CH₃ is shifted to 2.46-2.57 δ by a 5-OCH₃ group^{4,5,8}. Therefore, the 2.68 δ value reported by Bevan and Ekong could be interpreted as showing the occurrence of the methyl group on C-5.

None of the four isomeric coumarins (II), (III), (IV) and (V) was known; therefore we prepared all these products.

Condensation of p-cresol with malonic acid in the presence of zinc chloride and phosphorus oxychloride, following the general procedure of Shah⁹, gave 4-hydroxy-6-methylcoumarin, m.p. 245°-246° (from acetic acid), lit.¹⁰ 247°; treatment with dimethyl sulphate and potassium carbonate in acetone² yielded (III), m.p. 125°-126° (from cyclohexane).

The same condensation performed on o-cresol afforded 4-hydroxy-8methylcoumarin, m.p. 229°-230° (from ethyl acetate), lit.¹¹ 231°--232°, that was methylated to (V), m.p. 147°-148° (from methanol).

The condensation on m-cresol yielded a mixture, that was resolved by fractional crystallization from methanol. 4-Hydroxy-7-methylcoumarin, less soluble, has m.p. 207°-208° (from methanol), lit.¹¹ 216°-

-346-

HETEROCYCLES, Vol. 2, No. 3, 1974

-217°: by methylation it gave (IV), m.p. 156°-157° (from methanol). 4-Hydroxy-5-methylcoumarin, more soluble and obtained in poor yield, has m.p. 232°-233° (from aqueous ethanol), lit.¹¹ 233°-234°; by methylation it gave (II), m.p. 162°-163° (from cyclohexane).

Direct comparison of the NMR spectra (see Table) proved that 4methoxy-5-methylcoumarin (II) has the identical data reported for the natural product. Hence the coumarin extracted from <u>E.senegalensis</u> has the revised structure (II).

The interpretation of NMR spectra reported in this and in the previous paper² will help in the elucidation of the structures of natural coumarins.

All the products reported in this paper gave satisfactory elemental analyses.

		Table						
		H - 3	OCH ₃	Ar-CH ₃	H-5	H 6	H7	н-8
Bevan and	Ekong	5.65	3.95	2.68		6	.95-7.53-	
synthetic	(I)	6.26q	3.92	2 . 39d	7。	05-7.25-		-
synthetic	(11)	5.62	3.92	2.65		6	.90-7.35-	
synthetic	(III)	5.63	3.96	2.39	7.55		7.30d	7.09a
synthetic	(IV)	5.62	3.97	2.43	7.66d	7.02d		7.08
synthetic	(V)	5.64	3.94	2.41	7.61dd	7.07t	7.34dd	

-if not otherwise indicated, all signals are singlet -solvent: $CDCl_3$ for (I-V); not reported for the natural coumarin -(I): J_{allyl} 1.2 Hz. (III): J_{7,8} 8.5 Hz. (IV): J_{5,6} 8 Hz. (V): J_{5,6} 8 Hz, J_{6,7} 8 Hz, J_{5,7} 2 Hz.

REFERENCES

- 1 C.W.L.Bevan and D.E.U.Ekong, Chem.Ind.(London), 1965, 383.
- 2 P.Venturella, A.Bellino, and F.Piozzi, <u>Tetrahedron Letters</u>, 1974, 979.

-347-

3	E.H.Woodruff, Organic Synthesis, vol. 24, J.Wiley, New York, 1941,						
	p. 69.						
4	R.Grigg, J.A.Knight, and P.Roffey, Tetrahedron, 1966, 22, 3301.						
5	S.K.Jain, O.P.Aggarwal, U.S.Mahnot, and R.L.Mital, Monatsh., 1970,						
	101, 1052.						
б	G.Büchi, D.H.Klaubert, R.C.Shank, S.M.Weinreb, and G.N.Wogen, J.						
	<u>Org.Chem.</u> , 1971, 36, 1143.						
7	F.Bohlmann, C.Zdero, and H.Franke, Chem.Ber., 1973, 106, 382.						
8	G.Büchi, D.M.Foulkes, M.Kurono, G.F.Mitchell, and R.S.Schneider,						
	J.Am.Chem.Soc., 1967, 89, 6745.						
9	V.R.Shah, J.L.Bose, and R.C.Shah, J.Org.Chem., 1960, 25, 677.						
10	T.Shigeru and S.Noboru, Jap.Pat. 7028376, 16 Sept. 1970; Chem.						
	<u>Abstr.</u> , 1971, 74, 13003.						
11	K.Matsui and M.Ota, Nippon Kagaku Zasshi, 1957, 78, 517; Chem.						
	<u>Abstr.</u> , 1959, 53, 5257.						
	Received, 8th April, 1974						

-348---