A NOVEL FORMATION OF 1-HYDROXYMETHYL-4,5-DIMETHOXY-7H-AZIRINO[1,2-a]INDOLE-7a-CARBOXYLIC ACID γ-LACTONE Tetsuji Kametani, * Frank F. Ebetino, and Keiichiro Fukumoto Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan A. I. Meyers Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521 U. S. A. α -(6-Nitroveratrylidene)- γ -butyrolactone (1) rearranges to 3-(6-nitroveratryl)-2(5H)-furanone (5), and is deoxygenated to 1-hydroxymethyl-4,5-dimethoxy-7H-azirino[1,2-a]indole-7a-carboxylic acid γ -lactone (6) in triethyl phosphite at 140 - 150°. Although frequently postulated in triethyl phosphite reductions of nitro compounds, aziridines have not, heretofore, been isolated. Deoxygenation of α -(6-nitroveratrylidene)- γ -butyrolactone (1) with triethyl phosphite at 140 - 150° over 5 hr afforded a mixture of six products and a trace of 1. In addition to 3,4-dihydro-7,8-dimethoxy[1,3]oxazino[3,4-a]indol-1-one (2)(3.7%), ethyl 5,6-dimethoxyindole-2-carboxylate (3)(trace), and 2,3-dihydro-6,7-dimethoxyfuro[2,3-b]-quinoline (4)($\langle 1\% \rangle$), compounds obtained previously 2 at 160 - 165° after 20 hr, the following new compounds were isolated: 3-(6-Nitroveratryl)-2(5H)-furanone (5) (7.1 %), mp 122° (solidifies and remelts at 134°); uv (MeOH) 243, 300 sh, 340 nm; ir (CHCl₃) 1750 (C=O), 1580, 1500, 1325 cm⁻¹ (NO₂); nmr (CDCl₃) δ 3.93 and 3.98 (8H, s, 2 x OCH₃ and ArCH₂), 4.75 (2H, distorted d, \underline{J} 1.5 Hz, OCH₂CH), 7.02 (lH, s, Ar 2 - H), 7.18 (lH, distorted t, \underline{J} 1.5 Hz, OCH_2CH_2 , 7.63 (1H, s, Ar 5 - H); m/e 279 (M⁺), 262 (M⁺ - OH), 233 (M⁺ - NO₂); 1hydroxymethyl-4,5-dimethoxy-7H-azirino[1,2-a]indole-7a-carboxylic acid \gamma-lactone (6) (3.5 %), mp 179 - 180° ; uv (MeOH) 235, 290 nm; ir (CHCl₃) 1775 cm⁻¹ (C=O); nmr (CDC1₃) δ 2.82 (1H, d, \underline{J} 3 Hz, NC \underline{H} CH₂), 3.47 (2H, pair of d, \underline{J} 18 Hz, ArCH₂), 3.78 (6H, s, 2 x OCH₃), 4.27 (1H, dd, \underline{J} 10 and 3 Hz, OCH₂CH), 4.45 (1H, d, \underline{J} 10 Hz, OCH₂CH), 6.66 and 6.73 (each lH, s, ArH); m/e 247 (M^{+}), 232 (M^{+} - Me), 203 $(M^+ - CO_2)$, 188 (203 - Me or 232 - CO_2), 160 (188 - CH_2CH_2 or -CO); and α -(6-ethylaminoveratrylidene)- γ -butyrolactone (7) (< 1%), mp 131 - 134 $^{\circ}$; uv (MeOH) 240, 270, 305, 405 nm; (MeOH-HCl) 235, 295, 320 nm; ir (CHCl₃) 3435 (NH), 1730 (C≃O), 1605 cm⁻¹; nmr (CDCl₃) δ 1.28 (3H, t, <u>J</u> 8 Hz, CH₂CH₃), 2.05 (lH, br, NH exchangeable with D_2O), 3.16 (2H, q, \underline{J} 8 Hz, NHC \underline{H}_2 CH₃), 3.18 (2H, dt, \underline{J} 3 and 8 Hz, OCH₂C \underline{H}_2), 3.74 and 3.83 (each 3H, s, 2 x OCH₃), 4.35 (2H, t, \underline{J} 8 Hz, OCH₂CH₂), 6.15 (1H, s, Ar 5 - H), 6.76 (1H, s, Ar 2 - H), 7.44 (1H, t, \underline{J} 3 Hz, ArCH); $\underline{m/e}$ 277 (M⁺), 262 $(M^+ - Me)$, 260 $(M^+ - OH)$, 141. There are many pathways which could lead to lactone 7 and aziridine 6 on deoxygenation of 1. The plausible mechanisms are as follow; thus, 1 may be reduced to the hydroxylamine derivative (8), whose addition to the α , β -unsaturated lactone, followed by recyclization, gave the aziridine 6. In this case the reaction of 8 with ethanol would give the lactone 7. The other route to the aziridine 6 is the way that this reaction would proceed <u>via</u> a nitrene (9) which adds intramolecularly to an unsaturated lactone. Although aziridines have been suggested 2,3 as intermediates in the triethyl phosphite reduction of nitroaromatics, there appear to be no other cases of their isolation. Intermolecular addition of a nitrene, generated from a nitroso-aromatic, to olefins was reported to give aziridines. ## REFERENCES - 1 On leave from Norwich Pharmacal Co., Div. of Morton-Norwich Products, Inc., U. S. A. - 2 F. F. Ebetino, K. Fukumoto, and T. Kametani, <u>Heterocycles</u>, 1974, 2, 303; Tetrahedron, in press. - 3 J. I. G. Cadogan, Quart Rev., 1968, 22, 222; J. I. G. Cadogan and R. K. Mackie, Chem. Soc. Rev., 1974, 3, 87. - 4 R. A. Abramovitch and S. R. Challand, <u>J. Chem. Soc. Chem. Comm.</u>, 1972, 1160. Received, 2nd July, 1974