HETEROCYCLES, Vol. 2, No. 5, 1974

ASYMMETRIC SYNTHESIS OF SALSOLIDINE

T<u>adashi</u> O<u>kawara</u>

Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-hon-Machi, <u>Kumamoto, Japan</u> T<u>etsuji</u> K<u>ametani</u>^{*}

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

Optically active salsolidine (8) was isolated by reduction of 2alkyl-3,4-dihydro-6,7-dimethoxy-1-methylisoquinolinium iodides (6) with sodium borohydride followed by hydrogenolysis of Nalkylsalsolidines (7) with 10 % palladium hydroxide on charcoal. The optical purities ranged from 15 to 44 %.

Proskurina and Orekhov had isolated (-)-salsolidine from <u>Salsola arbusaula</u>,¹ which was then synthesized by Bischler-Napieralski reaction^{2,3} and by Pictet-Spengler condensation,^{4,5} followed by resolution.⁵ Battersby and Edwards⁶ determined that natural (-)-salsolidine had (S)-configuration by degradation to 2-carboxyethyl-(S)-alanine, which was prepared by cyanoethylation of (S)-alanine. We now wish to report the asymmetric synthesis of salsolidine by using optically active amines (2a - c).

The Schiff bases (3) were prepared by the reaction of 3,4-dimethoxyphenylacetaldehyde (1) with optically active amines (2) in dry benzene at room temperature and then reduced with sodium borohydride to give N-alkyl-3,4-dimethoxyphenethyl-

-571-

(5a-c)

(8)

-573-

Starting Material		Isolated Salsolidine		
Compounds	Configuration of R^{a}	Configuration	$[\alpha]_{D}^{25}(EtOH)^{b}$ (c = 0.5 - 2.1)	Optical Purity ^C %
6a	(s)-(-)-c ₆ H ₅ CH- CH ₃	(s)-(-)	-21,6~-26,1 ⁰	36 - 44
6b	(R)-(+)-C ₆ H ₅ CH- CH ₃	(R)-(+)	+23.0~+24.1°	39 - 41
6c	(s)-(-)-C ₆ H ₅ CH- C ₂ H ₅	(S)-(-)	- 8.8~-12.6°	15 – 21

- a (S)-(-)- α -Methylbenzylamine, $[\alpha]_D^{24}$ -41.2° (benzene), (R)-(+)- α -methylbenzylamine, $[\alpha]_D^{24}$ +40.5° (benzene), (S)-(-)- α -ethylbenzylamine, $[\alpha]_D^{24}$ -20.8° (benzene).
- b The specific rotation was measured by the use of a JASCO-ORD/UV-5 optical rotatory dispersion photometer.
- c The optical purity is defined as $[\alpha]_D^{obsd.}/[\alpha]_D^d$ x 100. (S)-(-)-Salsolidine, $[\alpha]_D^{22}$ 59.5° ± 0.5° (EtOH).⁶ d The value of natural product.

amines which were isolated as the hydrochloride (4). Acetylation of these amines with acetic anhydride and pyridine gave N-alkyl-N-(3,4-dimethoxyphenethyl)acetamides (5) as an oil. Cyclization of 5 with phosphoryl chloride in dry toluene gave 2-alkyl-3,4-dihydro-6,7-dimethoxyisoquinolinium chlorides, which were converted with sodium iodide to the isoquinolinium iodides (6). The iodides (6) were reduced with sodium borohydride in methanol to give N-alkylsalsolidines (7), which were subsequently cleaved by hydrogenolysis with 10 % palladium hydroxide on charcoal to give salsolidine (8) after purification on silica gel thin layer chromatography. In this case the optically active compounds (7a-c) were not isolated to prevent from fractionation during purification. The results are summarized in Table I.

The optical purities of the synthetic salsolidine ranged from 15 to 44 %. When (S)-(-)-amines and (R)-(+)-amine were used, the resulting salsolidines were (S)-and (R)- configuration, respectively. The use of α -methylbenzylamine gave a higher optical purity than the case of α -ethylbenzylamine. This reaction using other resolving agents is now under examination.

REFERENCES

- 1 N. Proskurina and A. Orekhov, Bull. Soc. chim. France, 1939, 144.
- 2 E. Späth and F. Dengel, Ber., 1938, 71, 113.
- 3 I. Jezo, M. Karvas, and K. Tihlark, Chem. Zvesti, 1960, 14, 38.
- 4 O. Kovacs and G. Fodor, Ber., 1951, 84, 795.
- 5 C. Schöpf and H. Bayerle, Annalen, 1934, 513, 190.
- 6 A. R. Battersby and T. P. Edwards, <u>J. Chem. Soc.</u>, 1960, 1214.

Received, 9th July, 1974