DIAZAPOLYCYCLIC COMPOUNDS. IX. SUBSTITUTED DIAZAQUINONE
ADDUCTS WITH DIMETHYLENECYCLOHEXANE, DIMETHYLENECYCLOHEXENE AND SUBSTITUTED BUTADIENES.

Berta López, Manuel Lora-Tamayo*, Pilar Navarro, and José Luis Soto

Centro Nacional de Química Orgánica. Juan de la Cierva, 3

and

Departamento de Química Orgánica de la Facultad de Ciencias

Madrid (Spain)

Substituted tetracyclic diaza compounds with varying positions of the nitrogen bridge have been synthesized by Diels-Alder reaction of substituted phthalazindiones with 1,2-dimethylenecyclohexane or 1,2-dimethylene- Δ^4 -cyclohexene and of naphthalazindiones with substituted butadienes in order to obtain compounds referable to tetracyclines of known activity.

Substituted diazatetracyclic compounds have been synthesized by Diels-Alder reaction of diazaquinones with 1,2-dimethylenecyclohexane (I) 1 , 1,2-dimethylene- Δ^4 -cyclohexene (II) 2 , 3 and substituted 1,3-butadienes. Two types of diazapolycyclic compounds were obtained whose skeletons differ in the position of the nitrogen bridge situated either between ring B and C (III, III') or C and D (IV), the general scheme of the synthesis beings as follows:

Oxidation of the suitable hydrazides with lead tetraacetate TAP 4 or t-butyl hypochlorite HBT 5 yields the corresponding diazaquinones V and VI in situ, which were reacted with the diene to give the 1,4-adduct. The hydrazides were prepared by usual way 6,7,8

The phylodienic character of 5-chloro-, 5-hydroxy- and 5,8-dichloro-phthalazin-1,4-dione (V) was tested against the simple diene 2,3-dimethy1-1,3-butadiene, the adducts VIIa-c being obtained.

Compound	M.p. °C	Solvent	H-Ar	CH ₂	CH ₃
VIIa	175	CCl ₄	1.4-2.6 (m)	5.62 (s)	8.15 (s)
VIIb	176	(CD ₃) ₂ SO	2.0-2.9 (m)	5.60 (s)	8.25 (s)
VIIc	238 dec	CCl ₃ D	2.33 (s)	5.60 (s)	8.27 (s)

TABLE 1. NMR signals (τ) of the adducts VII

Reaction of the diene (I) and (II) with the diazaquinones (V) yielded the adducts VIIIa-c and IXa.b.

TABLE 2. NMR signals (7) of the adducts VIII and IX

Comp.	M.p. ºC	Solvent	H-Ar	СН	CH ₂ -N	CH ₂ -C	CH ₂
VIIIa	132	CCl ₃ D	1.4-2.2 (m)		5.54 (s)	7.9 (m)	8.2 (m)
VIIIb	136 dec	s,c	1.8-2.6 (m)		5.88 (s)	8.1 (m)	8.4 (m)
VIIIc	192	CCl3D	2.2-3.0 (m)		5.58 (s)	7.9 (m)	8.2 (m)
IXa	286	CF3COOH	1.1-2.0 (m)	4.1 (m)	*5.2 (m)	7.15(m)	
IХЪ	148	CC13D	1.6-2.5 (m)	4.2 (m)	5.52 (m)	7.28 (m)	

 $[^]st$ 4H from two AB systems.

The diazaquinones (VI) with 2-methyl-1,3-butadiene and 2,3-dimethyl-1,3-butadiene gave the adducts X and XIa,b.

TABLE 3

Comp.	M.p. °C	Solvent	H-Ar	СН	CH ₂	CH ₃
x	180	CCl ₃ D	1.2-2.5 (m)	4.23 (m)	5.45 (m)	8.12 (s)
XIa	260	CCl ₃ D	1.1-2.5 (m)		5.43 (s)	8.13 (s)
XIb	241 dec	СF ₃ COOH	1.0-2.4 (m)		5.05 (s)	7.97 (s)

All the compounds described were identified by elemental analysis and ir and nmr spectroscopy (60 MHz). Compounds VIIa-c, VIIIa-c, X and XIa-b were obtained between 45 and 70%. Adducts IXa-b were obtained in 10% and 20% yields, respectively. Actually, studies are in progress in order to obtain diazatetracyclic compounds referable to tetracyclines of known activity.

REFERENCES

- 1 W. J. Bailey and H. R. Golden, J. Am. Chem. Soc., 1953, 75, 4780.
- 2 A. C. Cope and E. C. Herrick, Organic Syntheses, 1950, 30, 29.
- 3 W.J. Bailey and J. Rosenberg, J. Am. Chem. Soc., 1955, 77, 73.
- 4 R.A. Clement, J. Org. Chem., 1962, 27, 1115.
- 5 T.J. Kealy, J. Am. Chem. Soc., 1962, 84, 966.
- 6 E.H. Huntress, L.U. Stanley and A.S. Parker, J. Chem. Educ., 1934, 11, 142.
- 7 H.D.K. Drew and F.H. Pearman, J. Chem. Soc., 1937, 26.
- 8 H.D.K. Drew, J. Chem. Soc., 1939, 836.

Received, 2nd August, 1974