SYNTHESES OF PHOSPHORUS CONTAINING HETEROCYCLES BY THE OZONOLYSES OF ALKENYLPHOSPHORAMIDATES (2). SYNTHESES OF THE SUGGESTED ACTIVE METABOLITE OF ISOPHOSPHAMIDE AND SOME RELATED COMPOUNDS

Akira Takamizawa, Saichi Matsumoto, Tsuyoshi Iwata, and Itsuo Makino Shionogi Research Laboratory, Shionogi & Co., Ltd.,

Fukushima-ku, Osaka 553

Ozonolysis of O-3-butenyl-N,N'-bis(2-chloroethyl)phosphorodiamidate afforded 2-[(2-chloroethyl)amino]-3-(2-chloroethyl)-4-hydroperoxytetrahydro-2<u>H</u>-1,3,2-oxazaphosphorine-2-oxide(4-hydroperoxyisophosphamide), which on deoxygenation with triethyl phosphite yielded 4-hydroxyisophosphamide, the suggested active species of the antitumor agent isophosphamide. Similarly, a number of related 1,3,2-oxazaphosphorinanes and 1,3,2-diazaphosphorinanes were prepared. Among them, both 4-hydroperoxy- and 4-hydroxyisophosphamide exhibited the most pronounced cytostatic activities in <u>in vivo</u> and <u>in vitro</u> experiments, confirming that they are indeed the active species.

The NMR studies on the stereochemistry of 4-hydroperoxy-1,3,2-oxazaphosphorinanes revealed that the C-4 hydroperoxy group is axially oriented and perhaps has <u>trans</u> disposition to the phosphorus alkylamino substituent.

As one of the urinary metabolites of 4-hydroperoxyisophosphamide in rabbits was isolated 2-[2-(2-chloroethylcarbamoyl)ethoxy]-1,3,2-oxazaphosphorolane-2-oxide which was synthesized by a new alkali-catalyzed ring contraction reaction of 4-keto-1,3,2-oxazaphosphorinane to 1,3,2-oxazaphosphorolane.