HETEROCYCLES, Vol. 3, No. 2, 1975

THE PREPARATION OF SOME CH_2^{\bigoplus} -SUBSTITUTED BICYCLO [3,2,1] OCTANES. THE ROTAMERIC BEHAVIOUR OF THE CH_2^{\bigoplus} -SUBSTITUENT.

State	University	of	Gent,	Krijgslaan	271	(S.4bis)
	B-90	000	GENT,	Belgium.		

The conformations of $\underline{\operatorname{cis}}_{2}-\operatorname{CH}_{2}X-4-\operatorname{Me}_{3}$, 6,8-trioxa-bicyclo[3,2,1]octane (X=Cl, $\overset{+}{\operatorname{Me}}_{3}$) and $\underline{\operatorname{cis}}_{2}-\operatorname{CH}_{2}\overset{+}{\operatorname{Me}}_{3}-4-\operatorname{Me}_{3}$,8-dioxa-6-aza-bicyclo[3,2,1]octane are investigated by ¹H-NMR spectroscopy. As a result of the imposed comformation of the five membered ring-moiety, the orientation of the side-chain is that with the C₂-N⁺ and adjacent O₃-C₂ bonds in an antiperiplanar relationship. This situation corroborates a previously proposed parallelity effect between p-O and C-N^{\oplus}.

We have found earlier¹ a pronounced rotameric preference of a CH_2NMe_3 side-chain with respect to an adjacent C-O bond, during a comparative study of $2-CF_3-4-CH_2NMe_3-1$, 3-dioxolanes and $2-CH_3-4-CH_2NMe_3-1$, 3-dioxolanes. Two types of rotamers could be distinguished. Type I (fig.1) is characterized by an antiperiplanar relationship between the $C_{4,1}-N^+$ and C_4-O_3 -bonds ; whereas in type II they stay gauche. We found¹ the latter situation to be the favoured one, if parallelity between the C_4 , $-N^+$ bond and an oxygen p-orbital is possible. Thus in $5-\tilde{N}Me_3-1$, 3-dioxane, the axial position is favoured (Type II) over the equatorial (Type D for at least 2 kcal/mole.^{1,2} This parallelity is compromised in 2-CH₃-1, 3-dioxolanes because of the tendency for flattening of the ring and as a result, the side-chain in these compounds prefer a type I-conformation. The conformation in 2-CF₃-1, 3-dioxolanes on the contrary is characterized by a lifted-out oxygen atom, and as a result they are type II-compounds.³ We have also investigated¹ 4-CH₂ $\dot{M}Me_3$ -1, 3-dioxanes. Molecular models disclose that C_4 , $-N/C_2$ -O₃-parallelity is possible in the fundamental chair form of these substances and they indeed were found to belong to the type II-compounds.¹

Figure 1

We now wish to report about the orientation of the CH_2NMe_3 group in <u>cis</u>-2-CH₂NMe₃-4-Me-3,6,8-trioxabicyclo[3,2,1]octane (), and in <u>cis</u>-2-CH₂NMe₃-4-Me-3,8-dioxa-6-aza-bicyclo[3,2,1]octane (2) as a further check of this parallelity effect.

(1) was prepared using trans-1,4-dichloro-2-butene as the starting material. The alkene was hydroxylated with $KMnO_4$ and so formed <u>threo</u>-1,4-dichloro-2,3-butanediol was then condensed with ethyl pyruvate under azeotropic removal of water, yielding 2-Me-2-COOEt-<u>trans</u>-4,5-di-CH₂Cl-1,3-dioxolane (B.p. 85°C/0.03 mm). After LiAlH₄-reduction of the ester-function the bicyclic compound was obtained by an SNi-reaction. From the synthesis, it is clear, that the 2-CH₃-group stands <u>cis</u> with respect to the remaining CH₂Cl-group. The latter is transformed in the CH₂⁺Me₃group following usual procedures.¹

The molecule combines a 1,4-dioxane-structure together with a 1,3-dioxolane structure (fig.2) and is rigid. A ${}^{3}J(1,2) = 0$ indicates a torsion angle of $\sim 90^{\circ}$ between these two protons. The 1,4-dioxane ring adopts a chair-conformation. Indeed, ${}^{3}J(1,7A) = {}^{3}J(1,7B)$ and both are very small (1.3 Hz), thus excluding the occurence of a boat conformation. The small value of the ${}^{3}J(1,7)$ shows, that one of the oxygen p-orbitals from the dioxane ring has a net equatorial character.^{4,5}

As a result of the chair dioxane ring, there is a unique conformation imposed on the dioxolane molety, <u>e.g.</u> an almost pure envelope with O_8 as the top ($\tau(C_2-C_3) < 30^\circ$, hence ${}^3J(1,2) = 0$). It follows that with this fixed conformation, no parallelity is allowed between the C₂,-N⁺ bond and the p-orbitals of the O₃-atom, and we therefore expect¹ the side-chain to be oriented as in <u>cis</u>-2-Me- $4-CH_2^{+}Me_3$ -1,3-dioxolane (type I). Indeed, we find H_{2'A} (proton with the large ${}^{3}J(2,2') = 9.5$ Hz) upfield ($\delta = 3.52$) from H_{2'B} (proton with a ${}^{3}J(2,2') = 1.5$ Hz, $\delta = 3.63$); moreover, shift-values and coupling constants of the side-chain protons in our bicyclic compound are very similar to those of <u>cis</u>-2-Me-4-CH₂⁺Me₃-1,3-dioxolane³ ($\delta = 3.52$ to 3.57 versus $\delta = 3.63$ to 3.62 with resp. ${}^{3}J = 9.50$ to 10.0 Hz and ${}^{3}J = 1.5$ to 1.9 Hz). As was already ascertained in all dioxolanes and dioxanes previously studied,¹ the CH₂Cl-side chain in the precursor ($\frac{1}{6}$; X=Cl) prefers also a type I-conformation (cf. Table).

Exact assignment of H_5 -protons may be done from long-range considerations. Long-range coupling is usually most pronounced when a planar zig-zag path can be traced along the bonds in going from one proton to the other. This is the so-called M-rule.⁶

For the 2-CH₂⁺Me₃-compound a 4 J(7,5) \sim 0.5 Hz is found on the H₅-proton at δ = 3.60, therefore this proton is assigned the equatorial partner (H_{5A}). The proton at δ = 3.66 is then the axial one.

For the 2-CH₂Cl-compound the proton at $\delta = 3.37$ shows a small ⁴J ~ 0.5 Hz and can therefore be assigned as H_{5A} (cf. fig.2). H_{5B} is then the axial proton at $\delta = 3.39$. The lowest field signal of the H₇-proton shows the same long-range of ~ 0.5 Hz, thus, H_{7A} (equatorial) becomes $\delta = 3.75$, H_{7B} (axial proton), $\delta = 3.55$.

The conformational behaviour of \underline{cis} -2-CH₂ \overline{Me}_3 -4-Me-3,8-dioxa-6aza-bicyclo[3,2,1]octane (2) is very similar to 1. The compound can be considered as a combination of a morpholine with a 1,3-

- 104 -

dioxolane moiety. It has been synthetised starting from <u>trans</u>-1,4-dichloro-2-butene which was hydroxylated with KMnO₄ to the same <u>threo</u>-1,4-diCl-2,3-butanediol as reported for $\frac{1}{6}$. This was then condensed with α -chloroacetone and the resulting 2-Me-2,4,5tri-CH₂Cl-1,3-dioxolane was closed using Me₂NH (m.p. 240°C). It is clear that only 2,4-cis-standing CH₂Cl-groups can react with Me₂NH with ring closure, thus the remaining CH₂Cl-group stands cis to the 2-CH₃ group. It was subsequently transformed to the CH₂N⁺Me₂ by classical procedures.

The H₁-proton being partially hidden in the ¹H-NMR-spectrum of 2 it was not possible to determine exactly ³J(1,2), although it can be stated that this value is certainly less than 2.0 Hz. Other values (Table) are very similar to those for 1 (e.g. J(1,7) \sim 1.0 Hz and 2.0 Hz) and the same conclusions may be drawn.

For both groups of the H₅ and H₇ protons, the lower field protons are now the equatorial ones (H_{5A} at $\delta = 2.88$, H_{5B} at $\delta = 2.28$; H_{7A} at $\delta = 2.99$, and H_{7B} at $\delta = 2.49$. H_{5A} as well as H_{7A} possess the ⁴J(5A,7A) = 0.8 Hz long-range coupling.

It is interesting to note, that in $\underline{\operatorname{cis}}$ -2-CH₂NMe₂-4-Me-3,8-dioxa-6-aza-bicyclo[3,2,1] octane (2; X=NMe₂) the CH₂NMe₂-side chain's orientation is mainly of type II, the proton with the largest ³Jvalue being situated downfield from the other one. An exact explanation for the latter behaviour cannot yet be given, but the reason must be an other one than for the CH₂⁺Me₃-compounds.

All ¹H-NMR-parameters are collected in the table. They were obtained at 300 MHz (VARIAN HR-300) and the values were ascertained by comparison with simulated spectra (SIMEQ 16/II program).

-105-

	Solvent	сн ₃	Hl	^H 2	^н 2'а	^Н 2'В	H _{5A}	н _{5в}	H _{7A}	^Н 7В
I	cs ₂	1.62	4.22	4.38	3.22	3.43	3.37	3.39	3.75	3.55
II	D20	1.50	4.43	5.02	3.52	3.63	3.60	3.66	3.90	3.84
III	cc14	1.30	4.13	4.13	2.23	2.11	2.60	1.98	2.61	2.28
IV	D ₂ O	1.56	4.46	••	3.48	3.58	2.88	2.28	2.99	2.49

Shift-values of bicyclo[3,2,1]octanes.^a

J-values in Hz of bicyclo[3,2,1]octanes.^a

	² J(2'A,2'B)	³ j(2,2'A)	³ J(2,2'B)	³ J(1,2)	² J (7A, 7B)	³ J(1,7A)	³ J(1,7B)	² J (5A, 5B)	⁴ J(5A, 7A)
I	-10.5	10.3	4.10	~0	-11.4	1.30	1.30	-11.3	∿-0.5
11	-13.7	9.50	1.50	~O	-11.9	1.20	1.20	-11.8	∿-0.5
III	-12.1	9.80	3.90	~ O	-10.8	1.80	1.90	-10.5	-0.8
IV	-13.6	11.7	2.30	max. 2.0	-12.6	∿1.0	2.00	-12.0	-0.8

^a See figure 2. I = $\frac{1}{2}(X = C1)$; II = $\frac{1}{2}(X = NMe_3)$; III = $\frac{2}{2}(X = NMe_2)$ and $IV = \frac{2}{2}(X = NMe_3)$.

ACKNOWLEDGEMENT

We thank the "Fonds voor Kollektief Wetenschappelijk Onderzoek" for their financial support.

REFERENCES

- 1. R. Van Cauwenberghe, M. Anteunis and L. Valckx, <u>Bull. Soc. Chim. Belges</u> (1974) 83, 285.
- 2. E.L. Eliel and F. Alcudia, J. Am. Chem. Soc. (1974) 96, 1939

é

- 3. M. Anteunis, R. Van Cauwenberghe and C. Becu, <u>Bull. Soc. Chim. Belges</u> (1973) 82, 591.
- 4. M. Anteunis, G. Swaelens and J. Gelan, Tetrahedron (1971), 27, 1917.
- 5. M. Anteunis, Bull. Soc. Chim. Belges (1966) 75, 413.
- 6. J. Meinwald and A. Lewis, J. Amer. Chem. Soc. (1961) 83, 2769.

Received, 14th October, 1974