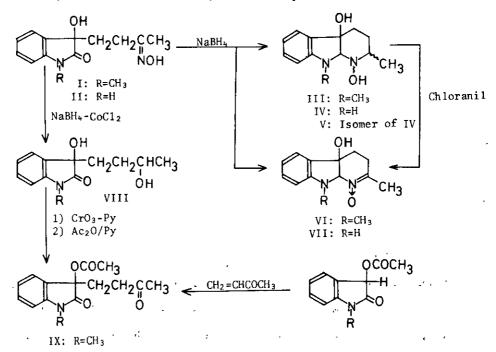
REDUCTION OF 3-HYDROXY-3-(3-HYDROXYIMINOBUTYL)OXINDOLES WITH SODIUM BOROHYDRIDE IN THE PRESENCE AND IN THE ABSENCE OF COBALT ION

Noboru Shoji, Yoshikazu Kondo, and Tsunematsu Takemoto* Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

> Reduction of 3-hydroxy-3-(3-hydroxyiminobuty1)oxindole (II) and its 1-methyl analog (I) with sodium borohydride afforded the orresponding pyrido[2,3-b]indoles. On the other hand, reduction of I with sodium borohydride in the presence of cobalt ion gave 3-hydroxy-3-(3-hydroxybuty1)-1-methyloxindole (VIII).

Reduction of 3-hydroxy-3-(2-hydroxyiminoalkyl)oxindoles with sodium borohydride has been investigated as a common method for preparing pyrrolo[2,3-b]indole derivatives¹.

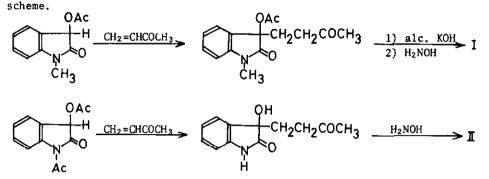

In an extention of this reductive cyclization, we found that 3-hydroxy-3-(3-hydroxyiminobutyl)oxindoles gave different products by conversion of reaction conditions.

When 3-hydroxy-3-(3-hydroxyiminobutyl)-1-methyloxindole (I)² was treated with sodium borohydride (13 molar equivalents) in methanol at room temperature, III and VI were obtained in 5.4% and 87.4% yields, respectively. III, mp 146-147°, had the molecular formula $C_{13}H_{18}O_2N_2$ on the basis of elemental analysis and mass spectral results³. The ir spectrum of III exhibited no absorption due to $v_{C=0}$. The uv spectrum showed absorption maxima at 251 nm (log ε 3.99) and 301 nm (log ε 3.41), which were characteristic of the Ph-N-C-N system. The nmr

- 147 -

spectrum⁴ of III showed a doublet (3H) at 1.22 ppm due to the secondary methyl group, a singlet (3H) at 2.93 ppm due to the N-methyl group and a singlet (1H) at 4.47 ppm due to the angular methine proton (>N-CH-N<). These data, together with a positive 2,3,5-triphenyltetrazolium chloride test, are consistent with the structure 1,4a-dihydroxy-2,9-dimethyl-1,2,3,4,4a,9a-hexahydropyrido[2,3-b]-indole for III. VI, amorphous solid, gave a crystalline picrate, mp 98-101°, $C_{13}H_{16}O_2N_2 \cdot C_6H_3O_7N_3$. The nmr spectrum of VI showed singlets at 2.00 ppm (3H), at 3.15 ppm (3H) and at 4.74 ppm (1H). which were assignable to the >-CH₃, the N-methyl group and the angular methine proton (>N-CH-N<), respectively. VI was finally proved to be 4a-hydroxy-2,9-dimethyl-3,4,4a,9a-tetrahydropyrido-[2,3-b]indole 1-oxide by conversion of III with chloranil.

On the other hand, when I was treated with sodium borohydride in the presence of cobalt ion⁵, a quite different product, the diol (VIII), $C_{13}H_{17}O_{3}N$, mp 160-162°, was obtained in 53.7% yield. The spectral results suggested the


simple conversion of the oxime group to the hydroxyl function⁶. The structure of VIII was unequivocally confirmed by following manner; VIII was oxidized with chromium trioxide-pyridine complex, followed by acetylation of the resulting ketone with acetic anhydride in pyridine to give 3-acetoxy-1-methyl-3-(3-oxobutyl)oxindole (IX). IX was identical with a sample, which was synthesizea separately by the condensation of 3-acetoxy-1-methyloxindole with methyl vinyl ketone.

Treatment of 3-hydroxy-3-(3-hydroxyiminobuty1)oxindole (II) with sodium borohydride in a refluxing isopropyl alcohol, whereas in methanol it was quice unreactive, yielded IV and V in 37.2% and 20.7% yields, respectively. IV, mp 165-167°, showed the molecular formula $C_{12}H_{16}O_2N_2$ on the basis of elemental analysis and mass spectral results. IV exhibited no absorption band at the carbonyl region in its ir spectrum, and showed absorption maxima at 240 nm (log \in 3.88) and 293.5 nm (log \in 3.52) in its uv spectrum. The nmr spectrum showed a doublet (3H) at 1.24 ppm and a singlet (1H) at 4.68 ppm, which were assignable to the secondary methyl group and the angular methine proton (>N-CH-N<). Furthermore, three singlets (each 1H) at 4.80, 6.17 and 9.92 ppm, which were exchangeable for deuterium, were assigned to the protons of hydroxyl and amino groups, respectively. IV showed a positive color test with 2,3,5-triphenyltetrazolium chloride. From these results, the structure of IV was favorably assigned to 1,4a-dihydroxy-2-methyl-1,2,3,4,4a,9a-hexahydropyrido[2,3-b]indole. V, mp 154-155°, showed a striking resemblance to IV on spectral data: mass spectrum, m/e 220 (M⁺ for $C_{12}H_{16}O_2N_2$); uv λ_{max} (log ϵ), 241 nm (3.84), 292 nm (3.38); nmr δ (ppm), 1.20 (3H, d, >CH-CH_z), 4.58 (1H, s, >N-CH-N<). V was assumed to be a stereoisomer of IV. This assumption was supported by the fact that IV and V afforded the same dehydrogenated product (VII) by treatment with chloranil. The stereochemistry of the two isomers is under investigation.

- 149 -

REFERENCES AND NOTES

- 1 N. Shoji, Y. Kondo, and T. Takemoto, Heterocycles, 1973, 1, 251.
- 2 Synthesis of key substances I and II was accomplished as shown in following

- 3 Satisfactory mass spectra and elemental analyses were obtained on all new compounds.
- 4 Nmr spectra were taken on a Hitachi R-20 spectrometer. The chemical shifts
 (δ) were calculated on the basis of TMS as an internal standard.
- 5 T. Satoh, S. Suzuki, Y. Suzuki, Y. Miyaji, and Z. Imai, Tetrahedron Letters, 1969, 4555; T. Satoh, S. Suzuki, T. Kikuchi, and T. Okada, Chem. Ind. (London), 1970, 1626; T. Satoh, Y. Suzuki, and S. Suzuki, Yakugaku Zasshi, 1970, 90, 1553; T. Satoh, K. Nanba, and S. Suzuki, Chem. Pharm. Bull. (Tokyo), 1971, 19, 817.
- 6 K. H. Bell, Aust. J. Chem., 1970, 23, 1415.

Received, 28th November, 1974