HETEROCYCLES, Vol. 3, No. 4, 1975

۲.

REACTIONS OF PYRIDINE N-OXIDE WITH ENAMINES OF N-SUBSTITUTED 4-PIPERIDONES IN THE PRESENCE OF AN ACYLATING AGENT

Michio Nakanishi and Masahiro Yatabe Research Laboratories, Yoshitomi Pharmaceutical Industries Ltd., Koiwai, Yoshitomi-cho, Chikujyo-gun, Fukuoka,Japan Masatomo Hamana* Faculty of Pharmaceutical Sciences, Kyushu University Maidashi, Higashi-ku, Fukuoka, Japan

> Pyridine N-oxide reacts with enamines of Nbenzoyl-,N-ethoxycarbonyl- and N-acetyl-4-piperidones in the presence of benzoyl chloride to give N-substituted 3-(2-pyridyl)-4-piperidones in fair or good yields. Enamine of N-methyl- or N-benzyl-4-piperidone resists this reaction.

Pyridine N-oxide (I) readily reacts with enamines of cyclohexanone in the presence of benzoyl chloride to give 2-(2pyridyl)-cyclohexanone on treatment of the reactants with 20% hydrochloric acid¹. While the reaction using 1(10)-dehydroquinolizidine as a heterocyclic enamine similarly proceeds², attempted reations with enamines of N-substituted 4-piperidones such as morpholine enamine of N-benzoyl-4-piperidone

- 287 -

(A) were described to be unsuccessful³.

Recently we happened to find that a small amount of picolinic acid N-oxide was obtained from the reaction of I with A by oxidation of the residue from the 20% hydrochloric acid extract with 30% hydrogen peroxide and acetic acid. This fact stimulated to re-examine this reaction, and we succeeded in the isolation of N-benzoyl-3-(2-pyridyl)-4-piperidone (II) on treatment of the reaction mixture with conc. hydrochloric acid instead of the generally used 20% hydrochloric acid.

Thus, when benzoyl chloride (1.2 equiv) was added to an ice-cooled solution of I and A (3 equiv) in chloroform, an exothermic reaction occured and the solution became dark red through yellow. The reaction mixture was kept at room temper-ature for 2 days, followed by extracting with conc. hydro-chloric acid to give II, light yellow powders, mp 114-116° (isopropyl alcohol-isopropyl ether), as a main product in 26% yield.

Structure assignment of II is based on the satisfactory elemental analysis $[C_{17}H_{16}O_2N_2]$, the ir spectrum $[v_{max}^{KBr}: 2600$ (a chelated hydrogen bond) and 1630 cm⁻¹ (an enol C=C bond)] and nmr spectrum [δ (CDCl₃): 2.48 (2H, t, J=6.0 Hz, C₅-H of piperidone ring), 3.68 (2H, t, J=6.0 Hz, C₆-H of piperidone ring), 4.33 (2H, s, C₂-H of piperidone ring), 8.30 (1H, m, α -H of pyridine ring) and 15.5 (1H, s, OH); apparently II exists chiefly as the enolic form (IIa) rather than the ketonic (IIb) and the enaminic ones (IIc) in the same way with other 2picolyl ketones⁴. Oxidation of II with 30% hydrogen peroxideacetic acid gave picolinic acid N-oxide (III).

The reaction can be explained by the addition-elimination process of the benzoyl-adduct of I as in the case reported earlier¹, and the reported failure³ in isolating the product II may be due to the sparing solubility of II in 20% hydrochloric acid.

It was further found that the use of morpholine enamine of N-ethoxycarbonyl-4-piperidone (B) instead of A gave the corre-

sponding product (IV), yellowish oil, bp 158-160° (0.3-0.4 mm Hg), in much better yield (85%). Treatment of V with sodium borohydride in ethanol afforded two isomeric alcohols (V and VI); V was isolated as a crystalline hydrochloride, mp181-184°, and VI as an oxalate, mp 140°.

Some detailed examinations of reactions with enamines of Nethoxycarbonyl-4-piperidone revealed that there were no noticeable differences among reactions using 4-morpholino-, 4-piperidino- and 4-pyrrolidino-derivatives and the order in effectiveness of acylating agents were as follows : benzoyl chloride > tosyl chloride > acetyl chloride > acetic anhydride (see Table).

Much more remarkable is the large dependency of the ease with which the reaction occurs on the nature of the N-substituent of the piperidone; thus, the reaction of I with morpholine enamine of N-acetyl-4-piperidone (C) smoothly proceeded in the presence of benzoyl chloride to give the N-acetyl derivative (VII), bp 120-130° (bath temp.)(0.1-0.2 mm Hg), in 51.4% yield, but no definite product was obtained from the similar reaction with enamines of N-methyl- or N-benzyl-4piperidone.

Exp. No.	d (I)	Amine of Ena g (eq)	míne ^{a)}	A g	.X (eq)	Et₃N g(eq)	React. time	Product(IV) g (%)
1	4.75	morpholine	16.8	PhCOC	1 8.4	_	48hr	10.6
2	4.75	morpholine	(1.4) 16.8	TsC1	(1.2) 11.4	-	48hr	(85) 4.7
3	4.75	morpholine	(1.4) 16.8	AcC1	(1.2)	-	48hr	(37.9)
4	4.75	morpholine	(1.4) 16.8	Ac ₂ 0	(1.2) 6.1	-	48hr	(15.3) 0.4
5	4.75	piperidine	(1.4) 16.7	PhCOC	(1.2) 1 8.4	-	48hr	(3.3)
6	4.75	pyrrolidine	(1.4)	PhCOC	(1.2)	-	48hr	(79) 9.9
7	4.75	morpholine	(1.4) 12.0	PhCOC	(1.2) (1.7.0)	-	48hr	(79.8) 7.7
8	4.75	morpholine	(1.0) 24.0)	PhCOC	(1.0) (1.0)	-	48hr	(62) 10.1
9	4.75	morpholine	(2.0) 12.0 (1.0)	PhCOC	(1,0) (1,0) (1,0)	5.06	48hr	(81.5) 5.7 (46)

Table I

a) Enamine of N-ethoxycarbonyl-4-piperidone

Enamine B is most reactive towards this type of reaction among enamines of N-substituted 4-piperidone so far examined and reacts with various derivatives of pyridine and other aromatic N-oxides. The details of this study will be published shortly.

REFERENCES

- 1 M. Hamana and H. Noda, <u>Chem. and Pharm. Bull.</u> (Japan), 1965, 13, 912.
- 2 S. Saeki, A. Yamashita, Y. Matsukura, and M. Hamana, <u>Chem.</u> and <u>Pharm. Bull.</u> (Japan), 1974, 22, 2341.
- 3 M. Hamana, "The Chemistry of Heterocycles", Vol.3, ed. by Y. Kitahara, T. Kametani, and T. Kato, Nankodo Co., Ltd., Tokyo and Kyoto, pp. 59-60, 1971.
- 4 R. F. Branch, A. H. Beckett, and D. B. Cowell, <u>Tetrahedron</u>, 1963, 19, 401: G. Klose, and E. Uhlemann, <u>ibid.</u>, 1966, 22, 1373.

Received, 17th January, 1975