1,4-ADDITION REACTIONS OF 4-(m-NITROBENZYLIDENE)3,5-DIMETHYLISOPYRAZOLE

Takushi Kurihara*, Emi Araya, and Toshiko Sakaguchi
Osaka College of Pharmacy, 2-10-65, Kawai, Matsubara, Osaka, Japan

Reactions of 4-(m-nitrobenzylidene)-3,5-dimethylisopyrazole(II) with hydrochloric acid in
methanol, acetic anhydride, acetic acid, benzoyl
chloride and dimethyl sulfate gave the 1,4-addition
products(III, IV, V, VIII, and IX) in fairly good
yields.

We reported previously the reactions of o-substituted benzylideneacetylacetones with hydrazine dihydrochloride in methanol or acetonitrile gave $4-(\alpha-\text{methoxy-o-substituted benzyl)-3,5-\text{dimethyl-pyrazoles}}$ and 4-(o-substituted benzylidene)-3,5-dimethylisopyrazoles, which was proposed to exist in a betain form based on its nmr data (the C_3- and C_5- methyl group showed the signal as singlet). Though only few papers have been published on isopyrazole, there is no report on the isopyrazole derivatives possessing an exo-double bond at C_4 . We wish to report here some reactivities of $4-(\underline{m}-\text{nitroben-zylidene})-3,5-\text{dimethylisopyrazole(II)}[mp 205-206°; both <math>C_3-$ and C_5- methyl group appeared as singlet at $\delta(\text{DMSO-d}_6)$ 2.05], prepared from m-nitrobenzylideneacetylacetone(I).

Reaction of II with catalytic amount of hydrochloric acid in

methanol followed by neutralization gave a 90% yield of 4-(α -methoxy-m-nitrobenzyl)-3,5-dimethylpyrazole(III)[M⁺ 261; δ (CDCl₃) 2.20(6H, s), 3.38(3H, s), 5.38(1H, s), 9.58(1H, bs), which is also obtained by condensation of I with hydrazine dihydrochloride in methanol¹.

Treatment of II with acetic anhydride or acetic acid at 70° gave a 92% yield of 1-acety1-4-(α -acetoxy-m-nitrobenzy1)-3,5-dimethylpyrazole(IV)[M⁺ 331; ν CHCl $_{\rm max}^{\rm CHCl}$ 3 1732 and 1730 cm⁻¹; δ (CDCl $_{\rm 3}$) 2.10, 2.21, 2.60 and 2.63(each 3H; each s)] or 4-(α -acetoxy-m-nitrobenzy1)-3,5-dimethylpyrazole(V) as oil, whose structural assignment was based on its ir(NH band at 3460 cm⁻¹) and nmr data. The isopyrazole II was treated with bromine in acetic acid at room temperature to give a mixture of m-nitrobenzaldehyde(VI) and 4-bromo-3,5-dimethylpyrazole(VII), presumably ν ia V ν ia

Reaction of II with benzoyl chloride in pyridine followed by treatment with ice water gave a 90% yield of 1-benzoyl-4-(α -hydro-xy-m-nitrobenzyl)-3,5-dimethylpyrazole(VIII)[ν , KBr 3400 and 1720 cm⁻¹; δ (CDCl₃) 2.01 and 2.63(each 3H, each s), 3.00 and 5.91(each lH, each bs)].

It is interesting to note that treatment of II in absolute toluene with dimethyl sulfate under reflux in less than 0.5 h gave a 25% yield of $4-(\alpha-\text{methoxy-}\underline{m}-\text{nitrobenzyl})-1,3,5-\text{trimethylpyrazole}$ (IX) [M⁺ 275; δ (CDCl₃) 2.11, 2.15, 3.38 and 3.75(each 3H, each s), 5.35(1H, s)].

The above results point out that only the 1,4-addition products were isolated, not the 1,2-addition product.

REFERENCES

- 1 T. Kurihara, M. Sugiyama, H. Hirano, K. Tomita, and M. Sakaki,

 J. Heterocyclic Chem., in press.
- 2 K. von Auwers and F. Bergmann, <u>Annalen</u>, 1929, <u>472</u>, 287; H.P. Patel and J.M. Tedder, <u>J. Chem. Soc.</u>, 1963, 4589; G. Mester and J. Vargha, <u>Chem. Ber.</u>, 1963, 96, 2334.
- 3 S.T. Hecht, Tetrahedron Letters, 1972, 3371.

Received, 15th May, 1975