ADDITION OF DIETHYL MESOXALATE TO BENZOFURANE-2(3H)-ONE, 1-BENZOTHIO-PHENE-2(3H)-ONE AND 2-INDOLINONE

Heinz Wolfers, Udo Kraatz and Friedhelm Korte Institut für Ökologische Chemie der TU München and Institut für Ökologische Chemie der Gesellschaft für Strahlen- und Umweltforschung mbH <u>München, D-805 Freising-Weihenstephan</u>,

Am Löwentor.

The condensation of a benzo-condensed lactone, thiolactone and lactam $\underline{la}-\underline{c}$ with diethyl mesoxalate does not yield α -methylene derivatives but only hydroxy compounds $\underline{4a}-\underline{c}$, which cannot be dehydrated further.

Within the scope of our studies on the condensation of lactones, thiolactones and lactams with ortho-esters^{1,2)} and activated carbonyl compounds, we have also tried the condensation with diethyl mesoxalate ($\underline{2}$). Analogous to the reaction with aldehyde or ketones^{3,4)}, we expected in connection with the benzo [b] fused compounds substances $\underline{1}\underline{a}$ - \underline{c} the corresponding derivatives $\underline{3}\underline{a}$ - \underline{c} . The reaction is effected by a slight excess of the ester $\underline{2}$ without solvent and at higher temperature (Tab.). However, it does not yield the expected condensation products $\underline{3}\underline{a}$ - \underline{c} , but the stable adducts $\underline{4}\underline{a}$ - \underline{c} .

Elimination of water from $4\underline{a}=\underline{c}$ to the $\boldsymbol{\alpha}$ -[Bis(ethoxycarbonyl) methylene]-derivatives $\underline{3}\underline{a}=\underline{c}$, which in comparable reactions occurs spontaneously^{3,4} cannot be attained even by heating and in the presence of acids, such as p-toluene-sulphonic acid. The same effect was observed with other adducts of dimethyl mesoxalate ester.⁵) It is not clear whether the unexpected stability of the tertiary alcohols $\underline{4}\underline{a}=\underline{c}$ can be due solely to the intramolecular hydrogen bond between the alcoholic proton H^b and the carbonyl groups. Even at high dilution, the IR-spectrum of $\underline{4}\underline{a}=\underline{c}$ shows only a large, intense OH-band between $3400-3500 \text{ cm}^{-1}$. In the ¹H-NMR spectrum the proton H^b appears as a sharp singlet at $\mathbf{T}=5.9$ and disappears when D₂O is added. The positions of both diastereoisomeric ethyl-ester groups vary slightly but distinctly ($\mathbf{A}\mathbf{T}$ (CH₃)=0.05 ppm; $\mathbf{A}\mathbf{T}$ (CH₂)=0.02 ppm).

It is of special interest that the alcoholic OH-group of $\underline{4}\underline{b}$ can be quickly methylated to the methyl ether $\underline{5}$ with diazomethane without adding acid catalysts as shown with $\underline{4}\underline{b}$.

- 572 ---

ł

Substance	React. Temp. (°C)	8	mp (^O C)	Mol.Formula		Analysis	
		Yield		(Mol.Weight)		с	Н
<u>4a</u>	180	40	84	^C 15 ^H 16 ^O 7 (308.3)	calc. found	58.44 58.63	5.23 5.13
<u>4</u> b	150	45	57	^C 15 ^H 16 ^O 6 ^S (324.3)		55.55 55.41	4.97 4.97
<u>4</u> ⊆	120	35	113	C ₁₅ H ₁₇ NO ₆ (307.3)		58.63 58.43	5.58 5.58
5	10	95	98	C ₁₆ H ₁₈ O ₆ S (338.3)		56.80 57.02	5.36 5.45

Characteristic ¹HNMR- and IR-Data of the Compounds 4a-c and 5a-c

	NMR (CDC1	₃ ; 7- values)	IR	IR (CHCl ₃ ; cm^{-1})				
	н ^а	нp	ν _{OH}	$\mathbf{v}_{C=0}(Ester)$	V C=O(Ring)			
<u>4a</u>	5.30	5.85	3460	1740	1805			
<u>4</u> b	5.24	5.95	3460	1730	1700			
<u>4</u> <u></u>	5.53	5.65	3420	1740	1720			
<u>5</u>	5.83	6.09	-	1720	1750			

REFERENCES

H. Wolfers, U. Kraatz and F. Korte, <u>Chem. Ber.</u>, 106, 874 (1973).
H. Wolfers, U. Kraatz and F. Korte, in preparation.
H. Zimmer, D. Gracian and J. Rothe, J. Org. Chem. <u>25</u>. 838 (1960).
R. Walter and H. Zimmer, J. Heterocycl. Chem. <u>1</u>, 205 (1964).
K. Wastl, T. F. Lemke and M. Mosher, Synthesis <u>1974</u>, 570.

Received, 21st April, 1975