THE REACTION OF ENAMINOKETONES WITH BENZOYL ISOTHIOCYANATE

Otohiko Tsuge* and Akitaka Inaba

Research Institute of Industrial Science, Kyushu University,

Hakozaki, Higashi-ku, Fukuoka 812, Japan

The reaction of enaminoketone 1a with benzoyl isothiocyanate (\mathcal{I}) in benzene afforded 2-thiopyridone derivatives, 8 [1:1 adduct - H_2O] and 9a [1:2 adduct - H_2S], and 3-benzamidothiocarbamoyl compound 11 [1:1 adduct]: the relative yields depended upon the reaction conditions. On the other hand, enaminoketone 1b reacted with \mathcal{I} in benzene to yield the 1-benzoyl-2-thiopyridone 12 [1:2 adduct - (HNCS + H_2O)], while the same reaction in dichloroethane gave the 2-thiopyridone 9b [1:2 adduct - H_2S].

We earlier reported that an enaminoketone, 4-(1-pyrrolidinyl)-3-penten-2-one (1a), reacted with aryl isothiocyanates to yield 3-arylthiocarbamoyl derivatives 2 and/or 2-thiopyridones 3, depending upon the nature of aryl isothiocyanates and the reaction conditions. On the other hand, the reactions of enaminoketones of type 4 with acyl isothiocyanates afford 1:1 adducts 5, which are readily converted into thiopyrimidines 6 by dehydration. However, little attention has been paid to the reaction of enaminoketone of type 1a with acyl

isothiocyanate.

For comparison with the reaction of enaminoketone <u>la</u> with aryl isothio-cyanates, and that of enaminoketones <u>4</u> with acyl isothiocyanates, it seemed of interest to investigate the reaction of enaminoketone of type <u>la</u> with acyl isothiocyanate. This paper deals with the reaction of enaminoketones, <u>la</u> and l-phenyl-3-(1-pyrrolidinyl)-2-buten-l-one (<u>lb</u>), with benzoyl isothiocyanate (<u>7</u>).

When enaminoketone 1a was allowed to react with 1 equiv of isothiocyanate \mathcal{J} in benzene at room temperature, two products, g [colorless prisms, mp 243-2450 dec] and g [yellow needles, mp 225-2260 dec], were formed, together with tarry material. The molecular formula of g [Cl7H18N2OS, m/e 298 (M⁺)] agreed with that of the compound derived from an 1:1 adduct with dehydration, and g was deduced to be 3-acetyl-6-phenyl-4-(1-pyrrolidinyl)-2-thiopyridone on the basis of its spectral data [ir v_{max}^{KBr} cm⁻¹ 3160 (NH), 1700 (CO); nmr g (CDC13) 1.99, 3.36 (each 4H, m, pyrrolidinyl protons), 2.88 (3H, s, COCH3), 6.28 (1H, s, =CH), 7.53 (5H, m, aromatic protons), 9.65 (1H, br, NH)].

The elemental analysis and molecular ion peak of 9a indicated that 2 equiv

of 7 and 1 equiv of 1a had combined with the loss of hydrogen sulfide. On the basis of the spectral data and chemical conversion, 9a was assigned as 5-acetyl-3-benzoyl-6-benzamido-4-(1-pyrrolidinyl)-2-thiopyridone [ir $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3200 (NH), 1670, 1640 (CO); nmr δ (CDCl₃) 1.81, 3.31 (each 4H, m, pyrrolidinyl protons), 2.46 (3H, s, COCH₃), 7.4-8.2 (10H, m, aromatic protons), 12.3, 13.1 (each 1H, br, NH); mass m/e 445 (M⁺)].

Hydrolysis of 9a with 1N potassium hydroxide aqueous solution under reflux for 1 hr afforded 6-amino-5-acety1-3-benzoy1-4-(1-pyrrolidiny1)-2-thiopyridone (10) quantitatively. 10: mp 198-200° dec; ir v_{max}^{KBr} cm⁻¹ 3360, 3260, 3160 (NH), 1640 (CO); nmr δ (CDCl3) 1.76, 3.30 (each 4H, m, pyrrolidiny1 protons), 2.31 (3H, s, COCH3), 6.90 (2H, br, NH2), 7.3-8.1 (5H, m, aromatic protons), 12.2 (1H, br, NH), mass m/e 341 (M⁺)].

Me CR Ph C-NCS
$$\rightarrow$$
 RC Ph CR CR \rightarrow Ph C-NCS \rightarrow RC Ph CR \rightarrow NHCPh \rightarrow 1a (R=Me) \rightarrow 1b (R=Ph) \rightarrow 12 (R=Ph, X=PhCO) \rightarrow 9a (R=Me) \rightarrow 12 (R=Ph, X=PhCO) \rightarrow 9b (R=Ph) \rightarrow 10 \rightarrow 11 \rightarrow 11 \rightarrow 12 \rightarrow 10 \rightarrow 11

Scheme 1

On the other hand, the reaction of 1a with 0.5 equiv of 2 at room temperature afforded 3-benzoylthiocarbamoyl-4-(1-pyrrolidinyl)-3-penten-2-one (11), mp 128-129° dec, as orange prisms. The ir spectrum of 11 exhibited no well-defined bands ascribable to vNH absorptions, but the following spectral data supported the assigned structure [ir v_{max}^{KBr} 1700 cm⁻¹ (CO); nmr δ (CDC13) 1.83 (3H, s, CH3), 2.17, 3.92 (each 4H, m, pyrrolidinyl protons), 2.75 (3H, s, CO-CH3), 7.8-8.3 (5H, m, aromatic protons), 14.82 (1H, br, NH); mass m/e 298 (M⁺-H20)]. The spectral data also indicate that 11 exists as the chelating form⁶ as shown in Scheme 1. The results under various reaction conditions are given in Table 1.

Table 1 Reaction of la with I in benzene

Reaction conditions			Product, yield %		
la/7 (mol/mol)	Temp.	Time hr	8	<u>9</u> a	11
1	room temp.	10	13.2	4.7	
1	"	3 days	1.0	12.4	
0.5	"	20		25.8	
2	"	3			69.6
2	80	2		27.0	

Upon heating at 150° for 30 min or treatment with 6.5N potassium hydroxide aqueous solution at room temperature for 5 hr, 11 was transformed into 8 in 38 or 42% yield respectively. In addition, 11 reacted with 1 equiv of χ in boiling 1,2-dichloroethane to form 9a in 39% yield. Thus, the formation of 8 and 9a can be interpreted as arising from 11.

The reaction of enaminoketone \underline{lb} with 1 equiv of $\underline{\mathcal{I}}$ in benzene at room

temperature for 5 hr did not form the expected products of types § and 9a, but 1,3-dibenzoyl-6-phenyl-4-(l-pyrrolidinyl)-2-thiopyridone (12) whose structure corresponded to the compound derived from an 1:2 adduct of 1b and Z with the loss of water and of hydrogen isothiocyanate, was obtained in 42.2% yield. However, the same reaction in 1,2-dichloroethane at room temperature gave 3,5-dibenzoyl-6-benzamido-4-(l-pyrrolidinyl)-2-thiopyridone (9b) in 15.4% yield. The structures of 12 and 9b were deduced on the basis of their spectral data.

12: yellow prisms; mp 254-255° dec; ir v_{max}^{KBr} 1685 cm⁻¹(CO); nmr δ (CDCl₃) 1.89, 3.45 (each 4H, m, pyrrolidinyl protons), 7.2 (1H, s, =CH), 7.1-8.3 (15H, m, aromatic protons); mass m/e 464 (M⁺), 359 (M⁺ - PhCO, base peak).

9b: yellow needles; mp 242° dec; ir v_{max}^{KB} cm⁻¹ 3180 (NH), 1652 (CO); nmr δ (DMSO-d₆) 1.40, 3.0 (each 4H, m, pyrrolidinyl protons), 7.3-8.2 (15H, m, aromatic protons), 11.0, 13.0 (each 1H, br, NH); mass m/e 507 (M⁺), 402 (M⁺ - PhCO, base peak).

Recently, Carney, et al. ⁷ found that ethyl 2-benzamido-5-benzoyl-4-dimethylamino-6-thioxonicotinate (14), whose structure is the same as that of \mathfrak{G} , was formed in the reaction of ethyl \mathfrak{g} -dimethylaminocrotonate with \mathfrak{Z} in chloroform. They also proposed a complicated reaction pathway via the pyrylium intermediate 13.

The pathway of formation of $\underline{9}$ from $\underline{1}$ and $\underline{7}$ may be similar to that proposed

by Carney et al.; this is now under investigation.

REFERENCES

- 1 Studies of Enamines. VII. Part VI: M. Tashiro, Y. Kiryu, and O. Tsuge, Bull. Chem. Soc. Japan, 1975, 48, 616.
- 2 0. Tsuge and A. Inaba, ibid., 1973, 46, 2221.
- 3 G. deStevens, B. Smolinsky, and L. Dorfman, J. Org. Chem., 1964, 29, 1115.
- 4 J. Goerdeler and J. Gnad., <u>Chem. Ber</u>., 1965, <u>98</u>, 1531.
- 5 J. Goerdeler and D. Wieland, <u>ibid</u>., 1967, <u>100</u>, 47.
- 6 3-Arylthiocarbamoyl-4-(1-pyrrolidinyl)-3-penten-2-ones 2 exist as the same chelating forms that 11 does.²
- 7 R. W. J. Carney, J. Wojtkunski, B. Fechtig, R. T. Puckett, B. Biffar, and
- G. deStevens, <u>J. Org. Chem.</u>, 1971, <u>36</u>, 2602.

Received, 27th September, 1975