HETEROCYCLES, Vol. 4, No. 6, 1976

Photolysis of Some Quinoxaline-1,4-dioxides. A Method of Structural Assignment Adil A. Jarrar, Safi S. Halawi, and Makhluf J. Haddadin^{*} Department of Chemistry, American University of Beirut, Beirut, Lebanon

The structures of some 2,3,6(7)-trisubstituted quinoxaline-1,4dioxides were assigned through their photolytic rearrangement into 1,3,5(6)-trisubstituted benzimidazolones. Photolysis of related quinoxaline-1,4-dioxides demonstrated the generality of the rearrangement.

In an earlier study¹ we showed that benzofurazan oxide (<u>1</u>, R=H) reacts with enolate anions derived from symmetrical 1,3-diketones (<u>2</u>, $R_1=R_2$) to give 2,3-disubstituted quinoxaline-1,4-dioxides (<u>3</u>, $R_1=R_2$). In subsequent work², we found that the two possible products (<u>4</u> and <u>5</u>, R=H) of the reaction of benzofurazan oxide with unsymmetrical 1,3-diketones, such as <u>2b</u>, may be differentiated by their carbonyl stretching frequencies: 1660 - 1680 cm⁻¹ for type <u>4</u>, and 1700 - 1715 cm⁻¹ for type <u>5</u>.

- 1077 -

In principle, the reaction of a substituted benzofurazan oxide, such as <u>la</u>, with an unsymmetrical diketone, such as <u>2b</u>, could give rise to as many as four isomeric products (<u>4a</u>, <u>4b</u>, <u>5a</u>, and <u>5b</u>). This report describes a convenient method by which structural assignments can be reliably made.

The reaction of <u>la</u> with <u>2b</u> in diethylamine gave as the major product a single quinoxaline-1,4-dioxide which showed an infrared band at 1715 cm⁻¹ and which, therefore, cannot have structure <u>4</u> but must be either <u>5a</u> or <u>5b</u>. Since, upon photolysis³, <u>5a</u> should give by rearrangement the benzimidazolone <u>6</u> whereas <u>5b</u> should give <u>7</u>, a choice can be made between the two possible quinoxaline-1,4-dioxides on the basis of the structure of the photolytic product.

- 1078 -

It has already been established⁴ that the propionyl group in 1-benzoyl-3-propionylbenzimidazolone exists in the endo (Z) conformation⁵ and exerts a considerable deshielding effect on the C₄ proton (0.33 \uparrow units downfield from the other aromatic signals), whereas the benzoyl group has a negligible effect on the chemical shift of the C₇ proton. During the present investigation we found that, when the quinoxaline-1,4-dioxide derived from <u>la</u> and <u>2b</u> was photolyzed, the resulting benzimidazolone showed a broad singlet or an incompletely split doublet (1.83 \uparrow , J = 1.5 Hz, 1H) 0.27 \uparrow units downfield from the other aromatic protons. From this, it follows that the benzimidazolone is <u>6</u> and not <u>7</u> (for which the deshielded hydrogen at C₄ should have given rise to a distinct doublet) and that the precursor quinoxaline-1,4-dioxide must, therefore, be <u>5a</u> and not <u>5b</u>.

As expected, photolysis of the quinoxaline-1,4-dioxide <u>15</u> (C=O at 1680 cm⁻¹) gives the benzimidazolone <u>28</u>, which shows a doublet (J = 8.5 Hz) for the deshielded proton at 1.8 T (Table I). Similarly <u>16</u> (1715 cm⁻¹), <u>17</u> (1677 cm⁻¹), and <u>18</u> (1677 cm⁻¹) yield the benzimidazolones <u>29</u> (broad s, 1.83 T), <u>30</u> (d, J = 8.5 Hz, 1.7 T), and <u>31</u> (d, J = 8.5 Hz, 1.65 T) respectively. Because of the insufficient solubility of the above 1,3-disubstituted benzimidazolones in DMSO-d₆ and their parent benzimidazolones in CDCl₃, a study, analogous to that of Monro and Sewell⁵, of the solvent effect on the chemical shift of C₄ protons was not possible. The homogeneity of the quinoxaline-1,4-dioxides was established by repeated recrystallization, TLC using different eluents, and consistent sharp melting points.

- 1079 -

TABLE	I
	0
R., , , , , , , , , , , , , , , , , , ,	↑ N B
大人	
R ₄	Į ∏
	0 0

	Rı	Rz	R ₃	R4 %	lield	m.p.	ir (cm ⁻¹)	Partial nmr (1)
8	СНэ	Ph	н	н	70	223-4 ^a		
9	C₂H₅	Ph	Н	Н	22	199-0		
10	Ph	CH(CH ₃) ₂	H	н	13	175 ^a		
11	Ph	$C(CH_3)_3$	H	н	34	224-5 ^a		
12	CH3	Ph	CH3	CH3	48	222	1675,1330	d,1.68(2H),s,7.57(9H)
13	Ph	$CH(CH_3)_2$	CH3	СНз	կե	190	1710,1330	d,l.6(2H),m,7.2(lH), s,7.45(6H),d,9.1(6H)
14	Ph	$C(CH_3)_3$	CH3	¢H₃	34	237-9	1710,1330	d,1.55(2H),s,7.4(6H) s,9.0(9H)
15	CH3	Ph	н	CH3	76	213 - 4	1680,1330	m,1.2-1.7(2H),s,7.4,7.5(3H each
5a	Ph	C_2H_5	Н	CH3	22	176-7	1715,1335	m,1.25-1.7(2H), 2.5,7.4(5H), s,6.9(3H)
16	Ph	СН(СН _Э)2	Н	СНз	38	185-6	1715,1330	s,1.3(1H),d,1.5(2H),m,7.1(1H), s,7.35(3H),d,8.9(6H)
17 ^b	СНз	Ph	Н	CH30	36	212 - 3	1677 , 1330	d,1.4(1H),s,6(3H),s,7.5(3H)
18	C ₂ H ₅	Ph	н	CH30	5	197 - 8	1677,1330	d,1.45(1H),s,6(3H), q,7.4(2H),t,9(3H)
19	Ph	Ph	$CF_3(H)$	$CF_3(H)$	37	217-9	1668,1335	m,0.8-1.3(2H)
20	Ph	Ph	Cl	C1	36	211-3	1680,1330	d,1.05(2H)

a) Ref. 2.

b) Separated from the major product (R₁ = PhCO; R₂ = CH₃; R₃(R₄) = CH₃O) by recrystallization.

```
TABLE II
```


Reactants	roducts	п <u>1</u>	л ₂	n ₃	ⁿ 4	hr	%ITGTO		(cut -)	Fartia: mar ()
8	21	CH3	Ph	н	н	2ل	12	166 ^b	1750,1720	m,1.75(1H)
9	22	C ₂ H ₅	Ph	Н	Н	24	25	185	1750,1725	m,1.67(1H)
10	23	₽h	CH(CH ₃)	2 H	н	8	32	158	1740 , 1725	m,1.72(1H)
11	24	Ph	$C(CH_3)_3$, Н	н	2	26	120-1	1765,1695	m,2.1-2.9(9H)
12	25	CH3	Ph	CH3	CH3	6	15	195-7	1760 , 1710	s,1.93(1H)
13	26	Ph	CH(CH ₃)	z CH3	Сн _э	5	34	1.82	1745,1700	s,1.92(1H)
ւկ	27	Ph	C(CH ₃) ₃	снз	CH3	2	13	149-50	1770,1710	m,2-3(7H)
15	28	CH_3	Ph	Н	СНз	3.5	9	190-2 ^b	1770 , 1720	d,1.8(1H)
5a	6	Ph	C_2H_5	Н	CH3	6	17	176-7	1750 °, 1703	d,1.83(1H)
16	29	Ph	CH(CH ₃)	2 H	CH3	6	10	172-4	1750 °, 1710	s,1.83(1H)
17	30	СНз	Ph	н	осн _э	4	14	166-8	1760 , 1730	d,1.7(1H)
18	31	C₂H₅	Ph	н	осн _э	4	8	167	1765,1730	a,1.65(1H)
19	32	Ph	Ph	$CF_3(H)$	(CF ₃)	н 1.5	13	164-5	1752 °, 1700	m,1.7-2.8
20	33	Ph	Ph	Cl	Cl	1.5	10	229 - 30	1760 , 1700	s,1.9(2H)

a) Photolysis time depends on the lamp used and is best determined by TLC.

b) Y. Ahmad. M.S. Habib, A. Mohammady, B. Bakhtiari, and S.A. Shamsi, <u>J. Org. Chem</u>., 1968, <u>23</u>, 201.

c) KBr discs.

The photochemical generation of benzimidazolones from appropriately substituted quinoxaline-1,4-dioxides (Table I) in a general reaction, as evidenced by the results summarized in Table II. The photochemical reactions were run on a 0.5-1 g sample in methanol using a Hanovia 679A36 lamp.⁶ The quinoxaline-1,4-dioxides used in this study were prepared according to established procedures.^{1,2}

Acknowledgement. We thank Professor Costas H. Issidorides for helpful discussions and Chas. Pfizer and Co. Inc. for financial support.

References

- 1. C.H. Issidorides and M.J. Haddadin, J. Org. Chem., 1966, 31, 4067.
- 2. M.J. Haddadin, M.U. Taha, A.A. Jarrar, and C.H. Issidorides, Tetrahedron, in press.
- M.J. Haddadin, G. Agopian, and C.H. Issidorides, <u>J. Org. Chem</u>., 1971, <u>36</u>, 514.
- 4. M.J. Haddadin and A.A. Jarrar, Tetrahedron Lett., 1971, 1651.
- 5. A.M. Monro and M.J. Sewell, J. Chem. Soc. (B), 1971, 1227.
- 6. Melting points were determined on a Fisher-Johns melting point apparatus, and are uncorrected. Unless specified otherwise, infrared spectra were taken in nujol mulls on a Perkin-Elmer Grating Infrared Spectrophotometer 257. Nmr (w/v 10%) spectra were run in deuterated chloroform on a Varian A60-D spectrometer. All new compounds gave satisfactory elemental analyses which were performed by F. Pascher, Bonn, Germany.

Received, 10th March, 1976