PHOTOCHEMICAL CYCLOADDITION OF 2-PHENYL-3-ETHOXYCARBONYL- $\Delta^2\text{-PYRROLINE-4.5-DIONE WITH OLEFINS}^{\textcolor{red}{1}}$

Takehiro Sano and Yoshisuke Tsuda*

Showa College of Pharmaceutical Sciences, Setagaya-ku,
Tokyo-154, Japan

Photocycloaddition of 2-phenyl-3-ethoxycarbonyl- Δ^2 -pyrroline-4,5-dione with olefins carrying electron rich group proceeds in highly regio- and stereoselective manner to give [2+2] cycloadducts, while olefins substituted by electron withdrawing group gave no cycloadduct, suggesting that donor-acceptor interaction between two reactants may play an important role in this reaction.

Very little is hitherto known about the reactivity of the double bond in Δ^2 -pyrroline-4,5-diones (dioxopyrrolines)². We describe here the photochemical cycloaddition reaction of olefins with 2-phenyl-3-ethoxycarbonyl- Δ^2 -pyrroline-4,5-dione (1), deep yellow crystals, m.p. 185-186° which was prepared by reaction of oxalyl chloride with ethyl β -amino-cinammate.

Irradiation of a mixture of 1 and styrene in dimethoxyethane with high pressure mercury lamp at 0° for 30 min gave three products: A, m.p. 202-204°, $C_{21}H_{19}O_4N$; B, m.p. 180-183°, $C_{21}H_{19}O_4N$,

(spectral data see Table II); and C, m.p. 134-135°, $C_{21}H_{19}O_4N$, IR (Nujol): 3200, 3100, 1690, 1670, 1640 cm⁻¹, UV λ max: 285 nm (ϵ 10,000).

The formula and spectral data of the major product (A) revealed that it is the [2+2] cycloadduct (2) of the two reactants. The regio- and stereochemistry of the substituent was elucidated by analogy with the structure of photo-cycloadduct (7) of $1-[4'-bromopheny1]-2-pheny1-3-ethoxycarbony1-<math>\Delta^2$ -pyrroline-4,5-dione with styrene, whose structure has been determined by X-ray analysis³. The spectral data of 2 were similar to those of 7.

The analogous [2+2] photo-cycloadducts (3)-(6) were similary obtained, in moderate yield by reaction of 1 with ethyl vinyl ether, vinyl acetate, butadiene, and isopropenyl acetate, respectively, the results and the properties of the products being

Table I Photo-cycloaddition of $1 \over 2$ with Olefins										
Olefin	Reaction Conditions			Product (Yield, %				%)		
	temp.	(°c)	time(min)		$\overset{A}{\approx}$		$\stackrel{B}{\sim}$		ç	
$CH_2 = CH - Ph$	0		30	(2)	37	(8)	1	(9)	1	
$CH_2 = CH - 0Et$	0		60	(3)	55			(1 <u>0</u>)	4	
$CH_2 = CH - OAc$	0		45	(<u>4</u>)	21		_			
$CH_2 = CH - CH = CH_2$	-10		60	(5)	47				_	
CH ₂ =C(Me)-OAc	0		4.5	(6)	54 [†]		_			

[†] Assignment of the stereochemistry is tentative.

Tab	le II Spec	ctral Data of	Photocycloadducts				
Compound	m.p.	UV(dioxane)	IR(Nujol)	NMR(H*)			
		λ nm (ε)	cm ⁻¹	δ (ppm)			
(<u>2</u>)	202-204°	227 (7,600) 260sh (3,900)	1780, 1745, 1732	4.17t. J=10 Hz			
(3)	149-152°	225 (5,100) 255sh (3,300)	1760, 1720	4.77q. J ₁ =8 J ₂ =7 Hz			
(<u>4</u>) ∼	oil	255	1780, 1740 [¶]	5.889. J ₁ =9 J ₂ =6 Hz			
(<u>5</u>)	146-149°	258 (3,800)	1765, 1740, 1700	overlapped			
(<u>6</u>)	164-166°	258 (3,400)	1775, 1730				
(7)	181-183°	223 (19,000) 260sh (4,800) 310 (6,200)	1762, 1740, 1718	3.87t. J=10 Hz			
(8)	180-183°	227 (7,600) 255sh (3,600)	1781, 1745, 1720	4.83t. J=9 Hz			

 \P measured in CH_2Cl_2 solution.

summarized in Table I and II. The structures of these cycloadducts were elucidated by comparisons of their spectral data with those of 2. In most cases the compounds of type B and C were not isolated.

Contrary to the above olefins, olefins carrying electron with-drawing group (e.q. methyl acrylate, acrylonitrile) gave no cycloadduct, the starting material being recovered. This evidence suggests that donor-acceptor interaction between electron deficient double bond of 1 and electron rich olefins may play an important role in the above photo-cycloaddition⁴.

One of the minor by-product (B) was elucidated as a stereoisomer (8) of compound A since its spectral data were very similar to those of A except that the NMR signal of the proton with asterisk in compound A (see compound A in Table II) appeared at lower field by 0.66 ppm than that of A. This marked shift indicated that the proton and the ethoxycarbonyl group in compound A are in cis-arrangement.

The spectral data of compound C were profoundly different from those of compounds A and B. To this compound we tentatively assigned the dihydroazatropolone structure (9) which will be discussed in a separate communication.

REFERENCES

- 1 Dioxopyrrolines II. Part I. see ref. 2.
- 2 Y. Tsuda, K. Isobe, and A. Ukai, Chem. comm., 1971, 1554.
- 3 T. Sano, Y. Tsuda, H. Ogura, K. Furuhata, and Y. Iidaka, Heterocycles, 1976, 4, 1233.
- 4 N. D. Epiotis, <u>J. Amer. Chem. Soc.</u>, 1972, <u>94</u>, 1941, 1946.

 Received, 5th April, 1976