HETEROCYCLES, Vol. 4, No. 8, 1976

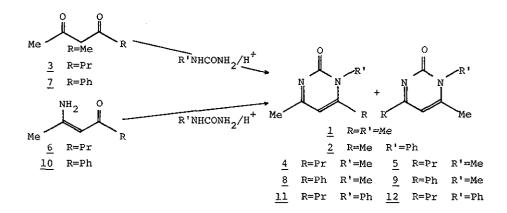
THE REACTION OF $\beta\text{-AMINOENONES}$ with N-substituted uneas

Choji Kashima,* Yasuhiro Yamamoto, and Yoshimori Omote, Department of Chemistry, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 300-31, Japan and

T<u>atsuo</u> O<u>tsuka</u>, and Y<u>oshihiko</u> T<u>suda</u>, Department of Chemistry, Tokyo Kyoiku University, Otsuka, Tokyo 112, Japan

The reaction of 2-amino-2-hepten-4-one with N-substituted ureas was described as well as 2,4-heptanedione. When the product ratios from both compounds were compared, β -aminoenones were concluded to react selectively. Also the selectivity was depend on the basicity of nitrogen of ureas.

2(1H)-Pyrimidinones are the quite interesting models related to the nucleic acids. Also 2(1H)-pyrimidinones are important intermediates in the synthesis of β -diamines.¹ It has been reported that these pyrimidinones are prepared from β -diketones and ureas in the presence of acid. For example, 2,4-pentanedione gives 1,4,6-trimethyl- $(\underline{1})^2$ and 1-phenyl-4,6-dimethyl-2(1H)-pyrimidinone $(\underline{2})^3$ by the treatment with N-methylurea and N-phenylurea, respectively. However, the two isomers are expected to be obtained from N-substituted urea and unsymmetric β -diketones. We now study the selective synthesis of 2(1H)-pyrimidinones.


Firstly, considering the shieldi $_3$ effect of phenyl group of $\underline{2}$, methyl group at C-6 position should be shifted. The methyl signals of $\underline{1}$ appeared at 6 2.33 (singlet) and 2.38 ppm (doublet), while those of $\underline{2}$ appeared at 6 2.40 (singlet) and 1.98 ppm (doublet), listed in Table 1. From these data, the doublet signals were assigned to be the methyl group at C-6 position. Therefore, the peak intensity ratio of C-4 and C-6 methyl protons gave the isomer ratio of 4-methyland 6-methyl-2(1H)-pyrimidinones. Secondly, the reaction of N-methylurea and 2,4-heptanedione (3) was carried out in ethanol to give 1,4-dimethyl-6-propyl- (4) and 1,6-dimethyl-4-propyl-2(1H)pyrimidinone (5). Unfortunately, the compound 4 and 5 could not separate. But the isomer ratio of 4 and 5 was found to be 1 : 0.90 from the nmr spectrum. This ratio was supported by the fact that the enol form of 3 was considered to be 1 : 1 ratio mixture of 4-hydroxy-3-hepten-2-one and 2-hydroxy-2-hepten-4-one. The nucleophiles such as Grignard reagents⁴ attack regioselectively on the β -carbon of β -aminoenones, which is isoelectronic with the enol form of β -diketones. But the β -aminoenones are easily hydrolyzed to β -diketones in the presence of acid in protic solvents. Therefore, N-methylurea and 2-amino-2-hepten-4-one (6)⁵ were treated in anhydrous benzene in the presence of dry hydrogen chloride. The product ratio of 4 and 5 was 1 : 2.0. Comparing with the basicity of methylamine and ammonia, the more basic nitrogen of urea prefers to attack on the β -carbon of <u>6</u> and then cyclized to pyrimidinones.

Since benzoylacetone $(\underline{7})$ is considered to be 1-phenyl-1-hydroxy-1-buten-3-one, the main product of the reaction of $\underline{7}$ and N-methylurea was expected to be 6-phenyl-1,4-dimethyl-2(1H)-pyrimidinone ($\underline{8}$). Indeed, the product ratio of $\underline{8}$ and 4-phenyl-1,6-dimethyl-2(1H)-pyrimidinone ($\underline{9}$) was found to be 1 : 0.095. The compound $\underline{8}$ (mp 181.5-182.5°) and $\underline{9}$ (mp 180-182°C) were separated by the fractional recrystallization. On the contrary, 1-phenyl-3-amino-2-buten-1-one ($\underline{10}$) gave $\underline{8}$ and $\underline{9}$ with the ratio of 1 : 0.42. In the same way, $\underline{3}$ and $\underline{6}$ were treated with N-phenylurea to give 1-phenyl-4-methyl-6-propyl- ($\underline{11}$) (mp 126-127.5°C) and 1-phenyl-4-propyl-6methyl-2(1H)-pyrimidinone ($\underline{12}$) (mp 165-166°C), which were separated by silica gel column chromatography. The product ratios of $\underline{11}$ and $\underline{12}$ were 1 : 2.1 and 1 : 0.8, respectively.

From these results, the reaction of urea and β -diketones is concluded to be controled by the enol form of β -diketones and the basicity of the ureas. Since the β -aminoenones can prepare in a pure isomeric form, the reaction is also concluded to be controled selectively in the synthesis of the unsymmetric 2(1H)-pyrimidinones.

- 1388 -

HETEROCYCLES, Vol. 4, No. 8, 1976

Compound	R	R'	δ of C-4 Methyl	δ of C-6 Methyl
1	Ме	Me	2.33 (s)	2.38 (d, J=0.7)
2	Me	Ph	2.40 (s)	1.98 (d, J=0.7)
<u>4</u>	Pr	Me	2.34 (s)	·
<u>5</u>	Pr	Me		2.40 (d, J=0.7)
<u>8</u>	Ph	Me	2.40 (s)	
<u>9</u>	Ph	Me		2.42 (d, J=0.7)
<u>11</u>	Pr	Ph	2.41 (s)	
12	Pr	Ph		1.98 (d, J=0.7)

Table 2

			Isomer Ratio				Products Ratio				
Compound	R	x	R	: Me	R Me	N N Me	Me ; r r	N Me Me		Ph ; R R	N Ph Me
compound	••										
<u>3</u>	Pr	OH	50	:	50	1	:	0.90	1	:	2.1
<u>6</u>	Pr .	NH2	0	:	100	1	:	2.0	1	:	0.80
7	Ph	OH	100	:	0	1	:	0.095			<u></u>
<u>10</u>	Ph	NH2	0	:	100	l	:	0.42			

-1389 -

REFERENCES

- 1 R. Hutchins, and B. E. Maryanoff, <u>J. Org. Chem.</u>, 1972, <u>37</u>, 1829.
- 2 W. J. Hale, <u>J. Amer. Chem. Soc.</u>, 1914, <u>36</u>, 104.
- A. Novacek, Collect. Czech. Chem. Commun., 1968, 33, 3919.
- 4 G. Köbrich, and W. E. Breckoff, <u>Ann.</u>, 1967, <u>704</u>, 42.
- 5 C. Kashima, S. Tobe, N. Sugiyama, and M. Yamamoto, <u>Bull. Chem. Soc. Japan</u>, 1973, 46, 310.

Received, 18th March, 1976