SYNTHESES OF 2-PYRONE DERIVATIVES

Yoshinori Tominaga, Yoshiro Matsuda, and Goro Kobayashi Faculty of Pharmaceutical Sciences, Nagasaki University 1-14, Bunkyo-machi, Nagasaki 852, Japan

1 14, Bankyo machi, Magabaki 052, Dapah

2-Pyrone derivatives were synthesized by the reaction of monoketone compounds with ketenethioacetals in the presence of powdered potassium hydroxide as a base.

In a continuation of our previous studies of the ketenethioacetals, we have synthesized several heterocyclic compounds using the displacement reaction of ketenethioacetals.^{1,2,3)} The present paper reports the syntheses of 2-pyrones by the reaction of ketenethioacetals with monoketone derivatives.

Reaction of ketenethioacetal, methyl 2-cyano-3,3-bis(methylthio)acrylate (MCMA)(2a), with acetophenone in the presence of powdered potssium hydroxide as a base gave 3-cyano-4-methylthio-6-phenyl-2-pyrone (3a), mp 201°, in 65% yield. In the same manner, 3-cyano-4-methylthio-6-(p-methoxy and p-bromo)phenyl-2pyrones (3b, c) were obtained in a good yield as shown in Chart 1. Reaction of 1b and 1c with 2-methoxycarbonyl-3,3-bis(methylthio)acrylate (2b) gave 3-methoxycarbonyl-4-methylthio-6-(\underline{p} -methoxy and \underline{p} -bromo)phenyl-2-pyrones(3d, e) in a poor yield as shown in Chart 1.

Chart 1

No. R	mp Yi (°C) (leld (%)	IR(KBr) cm ⁻¹	$\texttt{UV} \lambda_{\texttt{max}}^{\texttt{EtOH}}$	nm(loge)
3a H	201 6	55	2200(CN),1715(C=O)	239(3.08) 330(3.50)	,255(3.42) ,370(3.08)
3b MeO	215 3	85	2200(CN),1715(C=O)	250(3.42) 395(3.83)	,342(3.42)
3c Br	240 4	12	2200(CN),1725(C=O)	245(*) 338(*)	,262(*) ,375(*)
3d MeO	181 4	1	1705(C=O),1670(C=O)	245(3.96) 380(4.22)	,340(4.02)
3e Br	229 2	2	1705 (C=O)	245(3.82)	,338(4.08)

* Concentration is unknown because of insufficient solubility.

In a similar manner, cyclic monoketone derivatives, cyclohexanone and β -tetralone, reacted with 2a to give the condensed 2pyrone derivatives (4a, b) in 20%, 60% yield, respectively.

Analogous to the foregoing reaction, acetyl heterocyclic compounds, 2-acetylthiophene, 3-acetylpyridine, and 2-acetylquinoline, were allowed to react with 2a to produce the corresponding 2-pyrone derivatives (5a, b, c) in a good yield as shown in Chart 2.

Since 4-methylthio-2-pyrone derivatives have an active methylthio group for nucleophilic reagents such as amines or active methylene compounds, $^{4,5,6)}$ compounds 3, 4, and 5 would be useful as synthetic intermediates of 2-pyrone derivatives and this synthetic method may offer a useful information for synthsis of natural 2-pyrone derivatives such as aloenin, $^{7)}$ yangonin, $^{8)}$ auroventin, $^{9)}$ and nectriapyrone. $^{10)}$

REFERRENCE

- T.Hatada, M.Sone, Y.Tominaga, R.Natsuki, Y.Matsuda, and G.Kobayashi, J.Pharm.Soc.Japan, 1975, 95, 623.
- G.Kobayashi, Y.Matsuda, R.Natsuki, Y.Tominaga, and M.Sone, J.Pharm.Soc.Japan, 1973, 93, 612.
- Y.Tominaga, H.Fujito, K.Mizuyama, Y.Matsuda, and G.Kobayashi, Chem.Pharm.Bull. (Tokyo), submitted.
- G.Kobayashi, Y.Matsuda, R.Natsuki, Y.Tominaga, T.Okamura, and A.Itamura, <u>J.Pharm.Soc.Japan</u>, 1973, <u>93</u>, 964.
- Y.Tominaga, R.Natsuki, Y.Matsuda, and G.Kobayashi, J.Pharm. Soc.Japan, 1973, 93, 1523.
- 6) The reaction of 3, 4, and 5 with active methylenes and amines will be published in other paper.
- 7) T.Suga, T.Hirata, and K.Tori, Chem.Lett., 1974, 715.
- 8) W.V.Turner and W.H.Pirkle, J.Org.Chem., 1974, 39, 1935.
- 9) L.J.Mulheim, R.B.Beechey, D.P.Leworthy, and M.D.Osselton, J.C.S.Chem.Comm., 1974, 874.
- 10) M.S.R.Nair and S.T.Carey, Tetrahedron Lett., 1975, 1655.

Received, 8th July, 1976