HETEROCYCLES. II. PHOTOCHEMISTRY OF 4-(3',4'-DIMETHOXYPHENYL-ACETYL)-2-METHYLISOCARBOSTYRIL AND ITS ENOL ACETATES²

Masayuki Onda*, Yoshihiro Harigaya, and Tsutomu Suzuki School of Pharmaceutical Sciences, Kitasato University Minato-ku, Tokyo 108, Japan

Photolyses of the isocarbostyril ($\underline{2}$) and its enolacetates ($\underline{4}$) and ($\underline{5}$) are examined. The former affords the C-nor-benzo(c) phenanthridine ($\underline{3}$). The Z-isomer ($\underline{4}$) of the enolacetate isomerizes to the E-isomer ($\underline{5}$) along with formation of the acetylene ($\underline{6}$). Photolysis of the E-isomer ($\underline{5}$) in the presence of iodine gives the ll-acetoxybenzo(c) phenanthridines ($\underline{7}$) and ($\underline{8}$). Structures for all photo-products are confirmed on the basis of their NMR spectra.

A synthesis of the 11-oxygenated benzo(c) phenanthridines may be achieved from the 4-phenylacetylisoquinolines. It was found, however, that the attempted cyclization of the 1,2-dihydroisoquinoline ($\underline{1}$) was unsuccessful. We now wish to report photolyses of the isocarbostyril ($\underline{2}$) and its enol acetates ($\underline{4}$) and ($\underline{5}$).

It has been known that benzyl 1-cyclohexenyl ketone was smoothly photocyclized to 1,2,3,4,4a,10a-hexahydro-10-phenanthrone.

$$\underbrace{\frac{\text{AcO}}{\text{OMe}}}_{\text{OMe}} + \underbrace{\frac{\text{AcO}}{\text{OMe}}}_{\text{OMe}} \text{OMe} \\
\underbrace{\frac{\text{AcO}}{\text{OMe}}}_{\text{OMe}} \text{OMe}$$

Although $\underline{2}$ is similar to the above ketone, a quite different result was obtained. Photolysis of $\underline{2}^3$ in methanol with a 30 W low pressure mercury lamp gave the cyclized compound ($\underline{3}$), mp $162\text{-}162.5^{\circ}$, $C_{19}H_{19}NO_{3}$, in 10 % yield. The only carbonyl band observed at 1649 cm⁻¹ in its IR spectrum (CCl₄) corresponds to that of the lactam group. The NMR spectrum of $\underline{3}$ indicates the characteristic signals for the 4-H at δ 6.92 (s), the 1-H at δ 6.76 (s), the 4b-H at δ 4.88 (d, J 6 Hz), the 10b-H at δ 3.81 (m) and the 11-H₂ at δ 3.17 (d, J 6 Hz). On the basis of these data and the molecular formula, the C ring in $\underline{3}$ is considered to be a five-membered one, whose cis B/C ring fusion would be assigned from the coupling constant of the 4b-H. The same result was obtained with a 100 W medium pressure mercury lamp.

We, next, examined photolyses of $\frac{4}{4}$ and $\frac{5}{2}$. On acetylation with acetic anhydride in the presence of potassium acetate, $\frac{2}{2}$ afforded $\frac{4}{4}$ and $\frac{5}{2}$ in 70 and 15 % yield, respectively. The NMR spectrum of $\frac{4}{2}$ shows the signals for the 3-H at δ 7.39 (s), the vinyl-H at δ 6.29 (s), the 2'-H at δ 7.12 (d, J 2 Hz), 6'-H at δ 7.06 (q, J 9 and 2 Hz). That of $\frac{5}{2}$ exhibits the signals for the corresponding protons at δ 7.29 (s), 6.50 (s) and 6.64-6.61. On saturation of the vinyl-H in $\frac{4}{2}$ the NOE enhancements of 12.2, 6.4, 5.9 and 5.9 % for the 3-, 5-, 2'- and 6'-H, respectively, are observed. Saturation of the Me (δ 2.19) of OAc group in $\frac{4}{2}$ increases the signals for the 2'- and 6'-H by 14.8 %. On the other hand, saturation of the vinyl-H in $\frac{5}{2}$ gives no effect on the signal intensities for the 3- and 5-H. Considering $\frac{4}{2}$ and $\frac{5}{2}$ to be the Z- and E-isomer, respectively, these NOE results can

be understood. In the case of the E-isomer, two rings would loose coplanarity by the steric interaction. This is responsible for the upfield shifts of the 3-, 2° - and 6° -H in $\frac{1}{2}$ compared to those in $\frac{1}{4}$. The downfield shift of the vinyl-H in $\frac{1}{2}$ is ascribed to the anisotropic effect of the OAc group.

Photolysis of $\underline{4}$ in benzene with a 100 W medium pressure mercury lamp gave $\underline{5}$ and the acetylene $(\underline{6})$, mp $156-157^{\circ}$, $C_{20}H_{17}N_{3}$, in 63 and 4% yield, respectively. The NMR spectrum of $\underline{6}$ shows no signals for the vinyl-H and OAc group existed in that of $\underline{4}$. The 13 CNMR spectrum of $\underline{6}$ provides the signals for the acetylenic carbons at δ 92.83 and 82.10. These spectral data support the structure of $\underline{6}$. The enol acetate $(\underline{5})$ afforded $\underline{6}$ in 10% yield under the same conditions.

Photolysis of $\underline{5}$ in the presence of iodine under the same conditions as above afforded, expectedly, the l1-acetoxybenzo[c]-phenanthridines ($\underline{7}$), mp 208.5-210°, and ($\underline{8}$), mp 171-171.5°, in 17 and 14 % yield, respectively. Their structures are confirmed by the following spectral data: $\underline{7}$; NMR, $\underline{5}$ 8.70 (q, J 8 and 2 Hz, 7-H), 8.61 (q, J 8 and 2 Hz, 10-H), 7.80-7.42 (m, 8-and 9-H), 7.49 (s, 4-H), 7.30 (s, 12-H), 7.09 (s, 1-H), 4.00 (s, 2 x OMe), 3.97 (s, N-Me), 2.49 (s, OAc). IR (CHCl₃), 1763 (OAc), 1640 cm⁻¹ (CON). $\underline{8}$; NMR, $\underline{5}$ 8.64 (q, J 7 and 2 Hz, 7-H), 8.62 (q, J 7 and 2 Hz, 10-H), 7.83-7.43 (m, 8- and 9-H), 7.56 (d, J 9 Hz, 1-H), 7.35 (d, J 9 Hz, 2-H), 7.29 (s, 12-H), 4.00 (s, 3-OMe), 3.75 (s, 4-OMe), 3.50 (s, N-Me), 2.47 (s, OAc). IR (CHCl₃), 1763 (OAc), 1639 cm⁻¹ (CON). The upfield shifts of the 4-OMe and N-Me groups observed in $\underline{8}$ may be explained as

being due to their spatial orientation which arises to be free from their sterically mutual interaction.

REFERENCES AND NOTES

- 1 For Part I, see M. Onda, Y. Sugama, H. Yokoyama and F. Tada, Chem. Pharm. Bull. (Tokyo), 1973, 21, 2359. The article title, Isoquinolines. I., described in this literature is changed to Heterocycles. I.
- 2 IR spectra were recorded on a JASCO IR-G. NMR and ¹³CNMR spectra were taken on a JEOL JNM PS-100 at 100 and 25.1 MHz, respectively, for a deuterochloroform solution.
- 3 M. Sainsbury, S. F. Dyke and A. R. Marshall, <u>Tetrahedron</u>, 1966, 22, 2445.
- 4 M. Tada, H. Saiki, K. Miura and H. Shinozaki, <u>Bull. Chem.</u> <u>Soc. (Japan)</u>, 1976, 49, 1666.
- 5 I. Ninomiya, T. Naito, T. Kiguchi and T. Mori, <u>J. Chem. Soc.</u>,

 Perkin I, 1973, 1696; I. Ninomiya, T. Naito, H. Ishii, T.

 Ishida, M. Ueda and K. Harada. <u>ibid.</u>, 1975, 762; I. Ninomiya,
 T. Kiguchi, O. Yamamoto and T. Naito, <u>Heterocycles</u>, 1976, 4,
 467.
- F. R. Stermitz, "Organic Photochemistry," Vol. 1, ed. by
 O. L. Chapman, Marcel Dekker, Inc., New York, 1967, p. 246;
 E. V. Blackburn and C. J. Timmons, Quart. Rev., 1969, 23, 482.

Received, 16th August, 1976