MICHAEL ADDITIONS OF INDOLES TO 2-OXOINDOLIN-3-YLIDENE KETONES

Akinori Kubo^{*}, Tatsuya Nakai, and Toshikazu Nozoye Meiji College of Pharmacy, Setagaya, Tokyo, Japan

Michael-type additions to (E)-2-oxoindolin-3-ylidene ketones(1) and indoles(2) gave rise to C-1'(3) and/or C-3(4) adducts depending on the oxindolic N-substituents and the C-1' adducts(3) were converted into new 9H-pyridazino[3,4-b]indole derivatives(6).

2-Oxoindolin-3-ylidene ketones(1) are of considerable interests in their reactivities because of the presence of two α,β -unsaturated carbonyl systems in the molecule. Tacconi and co-workers¹⁾, in a series of investigations, have studied the reactions of (E)-2-oxoindolin-3-ylideneacetophenone(1a) with enamines and ethyl vinyl ethers undergoing heterodiene cycloadditions. It has been concluded that (E)-2-oxoindolin-3-ylideneacetophenone(1a) underwent 1,2 or 1,4-cycloaddition with aldo-enamines depending on the oxindolic nitrogen substituents. These results led us to study the effect of N-substituents on Michael-type additions.

We wish to report here the influence of N-substituents in (E)-

-1675 -

2-oxoindolin-3-ylidene ketones(1) on Michael-type additions²⁾ with indole derivatives as typical enamine and the structures of the unusual minor products in these reactions.

Indoles were found to react readily with (E)-2-oxoindolin-3ylideneacetophenone(la) in a refluxing acetic acid solution $^{3)}$ for 3 hr in N_2 to afford the corresponding adducts in good yields⁴⁾ (Table 1). In a typical experiment evaporation of the solvent and subsequent chromatographic separation on silica gel gave C-1' adduct(3a),75.5%, as the mixture of dl-threo and dl-erythro isomers and C-3 adduct(4a), mp 251-254°, 2.8%, $\lambda_{max}^{95\%EtOH}$ nm(log ϵ):221(4.65), 246(4.36),281(3.98),291(3.91); v^{KBr}_{max}cm⁻¹:3310,1721; & (DMSO-d₆):4.26 and 4.51(d,J=18Hz,1H),10.38 and 10.90(s,1H,NH). Recrystallization resulted successfully in isolation of each dl-diastereomer, 3a-1, mp 165-179°,71%, $\lambda_{max}^{95\% EtOH}$ nm(log ϵ):218(4.66),245(4.36),283(3.94), 291(3.88); ν^{KBr}_{max}cm⁻¹:3360,1705;δ(DMSO-d₆):4.49 and 5.59(d,J=6Hz,1H), 10.09 and 10.69(s,IH,NH) and 3a-II,mp 224-226°,4.5%, & (DMSO-d₆): 4.16 and 5.78(d,J=6Hz,1H),10.19 and 10.80(s,1H,NH). The gross structures of C-1' and C-3 adducts were determined easily by their mass spectra, 3a showed intense peaks at M-105(COPh)(A-fission) along with m/e 234(base),206(B-fission) and 4a showed the only intense peak at m/e 247(M-CH₂COPh)(base).

A. Carton

These results(Table 1) indicate that if R_1 is an electron-donating substituent the 3-position of the oxindole becomes more activated and the addition leads to C-3 adduct(4) in a moderate yield together with C-1' adduct(3), whereas, for the electron-attracting substituent the addition leads to C-1' adduct(3) exclusively.

Table 1	Addition	of	Indoles	to	2-Oxoindolin-3-	vlidene	Ketones
---------	----------	----	---------	----	-----------------	---------	---------

	1			2	Reaction		3 Datia of	4	5
	R ₁	R ₂	R ₃	R ₄	Conditions	(%)	Diastereomers	(%)	(%)
a)	Н	Ph	Н	H	AcOH,reflux	75.5	15.8:1	2.8	·
b)	H	Ph	Н	СНз	501	91	2:1		
c)	СНз	Ph	H	H		45	3:1	31	
d)	CH ₃	Ph	Н	CH3		71	1.7:1	12	
e)	сосн _з	Ph	Н	СНЗ		38+47	7(3b)		
f)	COPh	Ph	Η	Н		<u> </u>			
g)	Н	CH3	Н	Н		76			11
h)	Н	СН3	СН3	Н		65			
a)	Н	Ph	H	H	BF;Et ₂ 0	52	1.5:1	5	12
g)	н	CH ₃	H	Н	90°,10min	30			
h)	H	CH 3	CH3	H		40			<u> </u>

Table 2 9H-Pyridazino[3,4-b]indole Derivatives(6)

	R 1	R ₂	^R 3	mp(°C)	Yield(%)	
6a	Н	Ph	Н	>300	33	
6 C	СН ₃	Ph	Н	291.5	29	
6 g	Н	СН ₃	H	262-6	35	$O_{N} O_{N}^{H2}$
6h	Н	сн _з	сн ₃	>300	17	R ₁
						6

Under similar conditions, (E)-2-oxoindolin-3-ylideneacetone (1g) afforded C-1' adduct(3g),mp 205-208°,76%,m/e $304(M^+,21)$,261 (45,A) and 172(base),144(49,B); δ (DMSO-d₆):2.16(s,3H),4.37 and 4.7. (d,J=6Hz,1H), together with by-product(5g),mp >300°,11%, whose structural assignment was based on the following evidences, C₂₇-H₂₁ON₃,m/e 403(M⁺,52),388(M-15,base); v_{max}^{KBr} cm⁻¹:1714,1619; δ (DMSO-d₆) 2.03(s,3H),2.94 and 3.53(d,J=14Hz,1H),10.35,10.50 and 10.55(s,1H, NH); positive to Ehrlich reaction.

Furthermore, we examined this Michael-type addition in BF_3 . Et₂O at 90° for 10 min⁵. Thus 1a gave the C-1' adduct(3a),52%, along with a minor product(5a),mp 284-285.5°,12%, whose structure was determined by the following data, $C_{24}H_{18}ON_2$,m/e 350(M⁺,base); $\frac{KBr}{max}cm^{-1}$:1712,1620; $\delta(C_5D_5N)$:2.95(dd,J=6,14Hz,1H),3.93(dd,J=8,14 Hz,1H),5.39(dd,J=6,8Hz,1H); negative to Ehrlich reaction.

Formation of 5a and 5g can reasonably involve 'C-3 adduct' intermediate followed by intramolecular cyclization during the reaction. Investigation of this point is continuing in our laboratory.

Finally 3a, 3c, 3g and 3h were converted into new 9H-pyridazino-[3,4-b] indole derivatives(6) on treatment with hydrazine hydrate⁶

in acetic acid(Table 2).

As the result, we demonstrate that (E)-2-oxoindolin-3-ylidene ketones(1) are the excellent Michael acceptors under acidic conditions and the influence of the oxindolic N-substituents can be regarded as the determinant of the mode of Michael-type addition. REFERENCES

- a)G.Tacconi,A.Gamba,F.Marinone and G.Desimoni, <u>Tetrahedron</u>,
 1971, 27, 561. b)G.Tacconi,F.Marinone,A.Gamba and G.Desimoni,
 <u>ibid.</u>, 1972, 28, 1517. c)G.Tacconi,P.Iadarole,F.Marinone,
 P.P.Righetti and G.Desimoni, <u>ibid.</u>, 1975, <u>31</u>, 1179. d)G.Desimoni,
 A.Gamba,M.Onticelli,M.Nicola and G.Tacconi, <u>J.Am.Chem.Soc.</u>,
 1976, 98, 2947. e)G.Tacconi,A.C.Piccolini,P.P.Righetti,E.Selva
 and G.Desimoni, <u>J.Chem.Soc.Perkin I</u>, 1976, 1248. f)G.Desimoni
 and G.Tacconi, <u>Chem.Rev.</u>, 1975, <u>75</u>, 651.
- 2 R.L.Autrey and F.C.Tahk, Tetrahedron, 1968, 24, 3337.
- 3 W.E.Noland and M.R.Venkiteswaran, J.Org.Chem., 1961, 26, 4263.
- 4 Satisfactory elemental analytical, mass spectral and nmr data have been obtained for all new compounds.
- 5 M.Ando, G.Büchi and T.Ohnuma, J.Am.Chem.Soc., 1975, 97, 6880.
- 6 G.Kobayashi and S.Furukawa, <u>Chem.Pharm.Bull.(Tokyo)</u>, 1964, 12, 1129.

Received, 16th August, 1976