SYNTHESIS OF ADAMANTANE DERIVATIVES. 36.¹ SYNTHESIS OF SOME BISADAMANTANE SPIRO THIAHETEROCYCLES <u>VIA</u> ADAMANTANETHIONE ADAMANTHYLIDE

T<u>adashi</u> S<u>asaki</u>,*S<u>hoji</u> E<u>guchi</u>, and Y<u>oshiyuki</u> H<u>irako</u> Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464, Japan

> Adamantanethione adamanthylide (2) generated by thermal nitrogen extrusion reaction of thiadiazine 1 afforded thiirane 3 in good yield, and the same thermolysis of 1 in the presence of appropriate 1,3-dipolarophiles afforded bisadamantane spiro thiaheterocycles 8-13 in 25-77% yields.

Although thiadiazine is well known as a good precursor for generation of thiocarbonyl ylide or thione methylide,² 2',5'-dihydroadamantanespiro-2'-(1',3',4'-thiadiazine)-5'spiroadamantane (1)³ seems to be not used for such purpose heretofore. From our interest in adamantane spiro heterocycles,⁴ we investigated thermal decomposition of 1 in order to generate the corresponding thiocarbonyl ylide 2 which is expected to be useful intermediate for synthesis of some bisadamantane spiro thiaheterocycles.

Thiadiazine 1 was converted smoothly to a nitrogen extruded product 3 on refluxing for 10 hr in <u>o</u>-xylene. 3 was obtained as colorless plates after recrystallization from aqueous ethanol in 78% yield and was assigned as adamantane-

- 1901 ---

spiro-2'-thiirane-3'-spiroadamantane on the basis of analysis and spectral data (Table) as well as chemical conversions (Scheme). On treatment with <u>m</u>-chloroperbenzoic acid (4-fold excess to 3) in CHCl₃ at 25° for 3 days and at 50° for 0.5 hr, 3 was converted to the corresponding sulfoxide 4 (32%) and adamantylideneadamantane (6)⁵ (56%). 3 was converted also to 6 on refluxing with methyl iodide (5-fold excess to 3) in CHCl₃ for 7.5 hr (47%). The formation of 6 and nonisolation of sulfone 5 and sulfonium salt 7 are similar results to the behavior of 2,3-di-<u>t</u>-butylthiirane, sterically crowded thiirane.⁶ Furthermore, 3 was considerably stable in FSO₃H, thus, after standing for 1 day at 25° in FSO₃H, 3 was recovered in 85%. All of these results could be rationalyzed by assignment of 3 as a sterically crowded thiirane.

The thermal decomposition of 1 in the presence of 1,3dipolarophiles was examined as a facile route to bisadamantane spiro thiaheterocycles. A mixture of 1 and tetracyanoethylene (1.3-fold excess to 1) was refluxed in <u>o</u>-xylene for 14 hr and usual work-up followed by recrystallization $(CH_2Cl_2-C_6H_6)$ gave the corresponding adduct 8 in 77% yield. The structure of 8 was evidenced by analytical and spectral data (Table). Similarly, maleic anhydride (1.3-fold excess to 1, 12 hr), Nphenylmaleimide (1.1-fold excess, 18 hr), <u>p</u>-benzoquinone (1.5fold excess, 18 hr), diethyl azodicarboxylate (5.9-fold excess,13 hr) and dimethyl acetylenedicarboxylate (2-fold excess,13 hr) on refluxing with 1 in <u>o</u>-xylene afforded the corresponding adducts, <u>9-13</u> in 50, 60, 59, 25 and 40% yields, respectively (Scheme and Table). However, α -chloroacrylonitrile, oxabenzonorbornadiene, ethyl propiolate, phenyl isocyanate and

— 1902 —

phenyl isothiocyanate on refluxing with 1 in <u>o</u>-xylene did not afford the corresponding adducts and only 3 (45-82%) and adamantanone (14)(40-1%) were produced. The formation of 14 may be due to the decomposition of 2, because thiirane 3 was stable under the reaction conditions and furthermore, thermal decomposition of 1 in the presence of 75% aqueous acetic acid yielded also 14 (50%).

- 1903 ---

Table	Physic	al and an	alytical	data	of $\frac{3}{2}$,	4,	and	<u>8-13</u>	·
Compd (mp°C)	Ir(KBr) cm-1	Nmr(CDC13 60MHz) δ	, Fo	ormula		Ana	alys C	is ^a H	N
3 (157-158)	1100	2.90(s,4H 2.2-1.5(m	H), C ₂ 1,24H)	20 ^H 28 ^S	F C	80 79	.14 .95	9.40 9.39	
4 (160-162)	1030	2.6-1.5(m	n) C ₂	20 ^H 28 ^{OS}	F C	75 75	.98 .90	8.85 8.92	
8 (119-122)	2230, 1100	2.9 -1. 7(n	n) C ₂	26 ^H 28 ^N 4	S F C	73 72	.07 .86	6.65 6.59	12.81 13.07
9 (257-258)	1855, 1755	3.9(s,2H) 2.8-1.4(n), C ₂ n,28H)	24 ^H 30 ^O 3	S F	72 72	.48 .33	7.44 7.59	
<u>10</u> (227-230)	1710, 1380	7.7-7.0(n 3.80(s,2H 3.0-1.4(n	n,5H), C ₃ H), n,28H)	30 ^H 35 ^O	NS F C	75 76	.78 .07	7.40 7.45	3.26 2.96
11 (225-226)	1660, 1610	6.68(s,2H 3.70(s,2H 2.8-1.4(H	H), C ₂ H), n,28H)	26 ^H 32 ^O 2	S F	76 76	.58 .43	7.73 7.89	
(160-163)	1720, 1310, 1110	4.08(q,4) 1.27(t,6) 3.1-1.4()	H) ^b C ₂ H), m,28H)	26 ^H 38 ^O 4	N ₂ S F	65 65	.96 .78	8.09 8.07	5.70 5.90
<u>13</u> (258-260)	1720, 1580	3.80(s,6) 2.7-1.6(1	H), C. m,28H)	26 ^H 34 ^O	^{S I}	70 70	.32 .55	7.96 7.74	
^a F≠ F	ound.	C= Calcd	. ^b <u>J</u> =	7.5Hz.	•	,	•		

REFERENCES

- 1 Part 35: T. Sasakì, S. Eguchi and S. Hattori, <u>Tetrahedron</u> <u>Lett.</u>, in press.
- 2 (a) J. Buter, S. Wassenaar and R. M. Kellogg, <u>J. Org. Chem.</u>,
 <u>37</u>, 4045 (1972); (b) A. J. Arduengo and E. M. Burgess,
 <u>J. Amer. Chem. Soc.</u>, <u>98</u>, 5020 (1976).
- 3 A. P. Shaap and G. R. Faler, <u>J. Org. Chem., 38</u>, 3061 (1973).
- 4 T. Sasaki, S. Eguchi and Y. Hirako, <u>Tetrahedron</u>, <u>32</u>, 437(1976).

5 H. W. Geluk, <u>Synthesis</u>, 652 (1970); Ref 3.

6 P. Raynolds, S. Zonnebelt, S. Bakker and R. M. Kellogg, J. Amer. Chem. Soc., 96, 3146 (1974).

Received, 2nd October, 1976 -1904 -