ACETYL-1,3,4-THIADIAZOLINES FROM THE REACTION
OF THIOSEMICARBAZONES WITH ACETIC ANHYDRIDE

S<u>eiju Kubota</u>*, K<u>azuichi</u> F<u>ujikane</u>, M<u>asayuki</u> U<u>da</u>, and T<u>amiya</u> Y<u>oshioka</u>

Faculty of Pharmaceutical Sciences, University of Tokushima,

Shomachi, Tokushima, Japan

N.m.r. spectroscopy showed that the compounds obtained by reaction of thiosemicarbazones (I) with acetic anhydride are 2-acetylamino-4-acetyl-1,3,4-thiadiazolines (II) and not N_{\star}^4 S-diacetyl-thiosemicarbazones (III) as thought previously.

It has been reported that the reaction of thiosemicarbazones (I) with excess acetic anhydride gave N, S-diacetyl-thiosemicarbazones (III) 1,2,3,4 We found that the n.m.r. spectrum of the diacetyl compound (mp 222-223, lit., mp 222-224) obtained by reaction of benzaldehyde thiosemicarbazone (Ia) with excess acetic anhydride showed the signal of methine proton at δ 6.80. This δ value is 1.24 ppm to a higher field than that of the methine proton of the starting thiosemicarbazone (Ia) and is in good agreement with those of C-5 protons of 1,3,4-thiadiazoline derivatives. The signals of the aromatic protons of

the diacetyl compound appeared as a multiplet centered at δ 7.27, whereas those of the aromatic protons of (Ia) were separated in two broad multiplets centered at δ 7.36 and 7.78 in a ratio of 3:2, due to the effect of the adjacent -CH=N-group. The spectral data described above indicate that the product is 2-acetylamino-4-acetyl-5-phenyl-1,3,4-thiadiazoline (IIa) and not benzaldehyde N, S-diacetyl-thiosemicarbazone (IIIa).

The reaction of IIa with excess hydrazine hydrate (85%) at room temperature gave 2-amino-4-acetyl-5-phenyl-1,3,4-thiadiazoline (IV), mp 160-161°, n.m.r. spectrum [$\delta(DMSO-d_6)$: 6.97 (1H, s, C_5-H), 6.72(2H, s, NH_2), 7.26(5H, s, C_6H_5), 2.10(3H, s, $COCH_3$)]. Treatment of IV with ferric chloride solution gave 2-amino-5-phenyl-1,3,4-thiadiazole(V). This chemical evidence also supports the structure (IIa).

Similarly, the δ values of the methine protons of the products obtained in the reaction of thiosemicarbazones (Ib-Ih) with acetic anhydride indicate that structures (IIb-IIh) are reasonable for the products (Table). The signals of the aromatic protons of the products also support the cyclized structure (II).

Table

Starting material	n.m.r. (DMSO-d ₆)δ: -C <u>H</u> =N-	Product	Mp(°C)	Yield (%)	n.m.r. (DMSO-d ₆)δ: C ₅ - <u>H</u>
Ιa	8.04	IIa	222-223	78	6.80
Ιb	8.11	IIb	206-208*	78	6.79
Ιc	8.10	IIc	179-180**	66	6.89
Ιd	8.04	IId	220-222	54	6.84
Ιe	8.11	IIe	210-211	57	6.95
If	8.02	ΙΙf	229-233	68	6.82
Ιg	8.06	IIg	168-169	76	6.76
Ιh	7.88	ΙΙh	222***	76	6.70

^{*} lit., 208-211, ** lit., 188-190, *** decomp.

Reaction of acetophenone thiosemicarbazone with acetic anhydride gave a diacetyl compound, mp 216-217°, in 73% yield, n.m.r. spectrum [$\delta(\text{DMSO-d}_6)$: 2.02, 2.20 (each 3H, each s, 2 X COCH_3), 2.28 (3H, s, C_5 -CH $_3$), 11.75 (1H, s, NH)]. The diacetyl compound was also concluded to be 2-acetylamino-4-acetyl-5-methyl-5-phenyl-1,3,4-thiadiazoline, because the signals of its aromatic protons appeared at δ 7.32 as a singlet, whereas those of the starting thiosemicarbazone were separated in two broad multiplets centered at δ 7.36 and 7.90 in a ratio of 3:2.

REFERENCES

- 1. P. Hemmerich, B. Prijs, and H. Erlenmeyer, Helv. Chim. Acta, 1958, 41, 2058.
- 2. D.H. Jones, R. Slack, S. Squires, and K.R.H. Wooldridge, J. Med. Chem., 1965, 8, 676.
- 3. M.P.L. Caton, D.H. Jones, R. Slack, S. Squires, and K.R.H. Wooldridge, <u>J. Med. Chem.</u>, 1965, <u>8</u>, 680.
- 4. S. Toyoshima, K. Shimada, K. Kawabe, and T. Kanazawa, J. Pharm. Soc. Japan, 1969, 89, 779.
- 5. K.H. Mayer and D. Lauerer, <u>Liebigs Ann. Chem.</u>, 1970, 731, 142.
- M. Ohta, T. Higashijima, <u>J. Pharm. Soc. Japan</u>, 1952, <u>72</u>,
 376.

Received, 12th October, 1976