NOVEL BASE-MODIFIED NUCLEOSIDES 1 38

Herman P.M. Thiellier, Gerrit-Jan Koomen, and Upendra K. Pandit*

Organic Chemistry Laboratory, University of Amsterdam, Nieuwe
Achtergracht 129, Amsterdam, The Netherlands

Addition of halocarbenes to uridine derivatives leads to the formation of C_5 - C_6 adducts, which upon heating yield novel 1,3-diazepine nucleosides.

In connection with our continued interest in the synthesis of unconventional nucleoside analogues we have recently investigated the general synthesis and transformations of 1,3-disubstituted uracil-carbene adducts. This communication describes the utility of the observed reactivity-patterns in the synthesis of novel 1,3-diazepine nucleosides.

Reaction of 5'-acetoxy-2',3'-0-isopropylidene-3-methyluridine (1) with appropriate phenylmercurymethyl trihalides 4, in refluxing benzene, yielded diastereomeric mixture of adducts 2-5 in yields ranging from 50 to 70%. The diastereomers were separated by chromatography (silica gel column; eluents: ethyl acetate/cyclohexane) and classified as belonging to the A or B type depending upon the sign

Dedicated to Dr. K. Takeda on his 70th birthday.

of the CD maximum and the chemical shift of the C_1 ,-H in the product. Diastereomers of type A exhibited the C_1 ,-H proton in the narrow range of δ 5.58 - 5.64 while those of class B showed the same proton in the region δ 6.03 - 6.16 (Table I). CD spectral curves of diastereomers A and B possessed, in the range 248 - 262 nm, negative and positive maxima, respectively. The structures assigned to the carbene-adducts were fully substantiated by their microanalytical and/or spectral (ir and nmr) data.

Reduction of diastereomers 3A and 3B with $(n-C_4H_9)_3SnH$, followed by hydrolysis, led to the formation of nucleosides 6 and 7, respectively. Since these transformations would not affect the configuration of the cyclopropane ring, 6 should belong to the A series and 7 to the B series. Kunieda and Witkop⁵ have reported a positive Cotton effect (ORD spectrum) at 260 nm, for the 5R,6S diastereomer of 6. Since 3A was converted to the diastereomer of 6 with a negative Cotton effect at 258 nm (Table I), the latter can be, consequently, assigned the 5S,6R (11) configuration. It would follow from this correlation that the starting dibromo-adduct 3A possesses the corresponding 5S,6S (12) configuration. Accordingly, the series of diastereomers A and B may be assigned the configurations 5S,6S and 5R,6R, respectively.

It should be pointed out that the chemical shifts of the C_1 ,-protons (Table I) in the series A and B suggest a <u>syn</u>-conformation for the former and an <u>anti</u>-conformation for the latter class of diastereomers. Such preferred conformations could arise as a result of steric interactions of the halogen atoms with the ribose frame-work. This suggestion is borne out by the close similarity of the C_1 ,-hydrogens in the nucleosides <u>6</u> and <u>7</u> (Table I), which

TABLE I

	Chemical	Shifts (δ) a of sign	ificant	protons	and CD ⁶ (ORD)	data of	compounds	s 1 - 1	ο.
Compound	C(5)H	C(6)H	C(7)H	NMe	C(1')H	C(2')H ^d	C(3')H ^d	Ac	$^{\lambda}$ ma	_x [⊝]
1	5.82	7.33		3.32	5.70	5.05	4.88	2.09		
2 A	3.00	3.63		3.15	5.60	5.02	4.81	2.07	255	-26000
2 B	3.04	3.81	2	3.17	6.10	4.80	4.71	2.08	255	+22000
3A	3.07	3.76		3.16	5.62	4.84	4.72	2.08	262	-9600
3B	3.10	3.80		3.21	6.16	4.6-4.9	(m)	2.11	262	+9900
4A	3.08dd	3.70da		3.16	5.58	5.02	4.81	2.09	248	-29000
4B	3.08dd	3.90dd		3.16	6.03	4.6-4.9	(m)	2.03	249	+27500
5A	2.84dd	3.55		3.16	5.64	4.93	4.78	2.07	248	-24000
5B	2.87dd	3.66		3.18	6.04	4.6-4.8	(m)	2.06	249	+22000
8	6.51		5.33	3.26	5.59	4.7-4.9	(m)	2.10		·
9	5.82dd		5.41dd	3.23	5.51	4.83	4.57	2.07		
10		8.25	10.05	3.37	5.9	4.7-4.9	(m)	2.12		
7	2.19	3.32		3.12	5.95			2.07	244	+26000
					=				$^{\lambda}$ max $\left[oldsymbol{\Phi} ight]^{\mathbf{C}}$	
6 ^C	2.26	3.37		3.14	5.99				230	+27200
						·			258	-7500

Spectra taken in: a. $CDCl_3$; b. ethanol. c. The NMR and ORD spectra of compound 6 were taken in D_2O and H_2O , respectively, for comparison with the reported data (ref.5) d - centres of multiplets.

lack the halogens, and is further supported by the nmr data⁵ for the two diastereomers of <u>6</u>. In contrast to this configuration-conformation correlation, models of the 5R,6R and 5S,6S diastereomers of <u>2</u> appear to sterically favour the <u>syn-</u> and the <u>anti-</u>conformations, respectively. This observation, coupled with the <u>assumption</u> that the cyclopropane ring contributes to a cotton effect (at 260 nm) which is opposite in sign to that due to the methyl group in 5S-5-methyl-5,6-dihydrouridine, made by Kunieda and Witkop⁵ in assigning the 5R,6S configuration to <u>6</u>, cautions against a definitive configurational assignment of the diastereomers of adducts <u>2-5</u>. An X-Ray analysis of the diastereomers of <u>2</u> has been undertaken in order to settle this question.

When 3(A,B) were heated in t-butanol (110°, sealed tube) diaze-pinone derivative 8 and the aldehyde 10 were isolated in variable yields. The formation of 8 can be rationalized in terms of an electrocyclic ring-opening process such as has been previously proposed for the ring-expansion of uracil-carbene adducts. In line with this proposal, both diastereomers of 4 gave nucleoside 9 upon heating in t-butanol (110°) while 5A and 5B were unaffected under the same conditions. As expected, a concerted disrotatory cyclopropane ring-opening is sterically prohibited in the case of the exo-chloro adducts 5 (A,B) 7.

The mechanism of formation of $\underline{10}$ from $\underline{3}$ (A,B) is not clear at present. The role of the ribose moiety in the latter transformation is suggested by the absence of the aldehyde product ($\underline{10}$) in an analogous reaction of the 1,3-dibenzyluracil-dibromocarbene adduct 3 . A possible role of the C_5 ,-acetate group in the formation of $\underline{10}$, via catalysis of the C_6 - C_7 bond-cleavage in $\underline{3}$ (A,B),

has been eliminated by studies involving the 5'-deoxy analogue of $\underline{3}^8$. The mechanism of this reaction is receiving further attention.

The transformation of uridine derivatives to novel nucleosides, of which 8 and 9 constitute the first examples, is currently in progress.

Acknowledgement: We wish to thank Miss A.M. van der Burg for her skilled technical assistance.

REFERENCES

- * To whom all inquiries should be addressed.
- This paper may be regarded as Part XV of the series: Unconventional Nucleotide Analogues. For Part XIV, see F.M. Kaspersen and U.K. Pandit, J.C.S., Perkin I, 1975, 1798.
- 2 H.P.M. Thiellier, A.M. van der Burg, G.J. Koomen and U.K. Pandit, <u>Heterocycles</u>, 1974, 2, 467.
- 3 H.P.M. Thiellier, G.J. Koomen and U.K. Pandit, <u>ibid</u>., 1975, 3, 707.
- 4 D. Seyferth, J.M. Burlitch, R.J. Minasz, J. Yick-Puimui,
 H.D. Simmons Jr., A.J.H. Treiber and S.D. Dowd, J.Amer.Chem.
 Soc., 1965, 87, 4259.
- 5 T. Kunieda and B. Witkop, <u>ibid</u>., 1971, 93, 3478.
- 6 R.B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry", Verlag Chem/Ac. Press, 1970, 47.
- 7 T. Ando, H. Hosaka, H. Yamanaka and W. Funasaka, Bull. Chem. Soc. Japan, 1969, 42, 2013.
- 8 Unpublished results; forthcoming doctorate thesis of H.P.M.

 Thiellier. Received, 28th February, 1976