A SIMPLE ROUTE TO INDOLIZINE-2-CARBOXYLATES. CYCLOADDITION REACTIONS OF PYRIDINIUM ARYLSULPHONYLMETHYLIDES.

Rudolph A. Abramovitch* and Suchet S. Mathur

University, Ala. 35486, U.S.A.

Pyridinium-<u>p</u>-toluenesulphonylmethylides react with maleic anhydride in the presence of alcohols to give indolizine-2-carboxylates in a process involving selective decarboxylation and aromatization, and with phenylcyanoacetylene to give 1-cyano-2-phenylindolizines.

The 1,3-dipolar cycloaddition of pyridinium arylsulphonylmethylides with dimethyl acetylenedicarboxylate has been described recently¹ and led to the formation of 1,2-dimethoxycarbonylindolizines. Reaction with methyl propiolate gave the 1-methoxycarbonylindolizine. We now report the synthesis of indolizine-2-carboxylates <u>via</u> a novel route.

Reaction of 4-benzoyl-l-p-toluenesulphonylpyridinium trifluoromethanesulphonate (1; X=COPh) with maleic anhydride in the presence of triethylamine or DBU in chloroform containing ethanol gave 7-benzoyl-2-ethoxycarbonylindolizine (2; X=COPh, R=Et) (34.4%), m.p. 145-147°.² A similar reaction carried out in methylene chloride containing methanol gave 2 (X=COPh, R=Me) (60%), m.p. 205°. The orientation of the carboxyl function was established by the hydrolysis of dimethyl 7-benzoylindolizine-1,2-dicarboxylate¹ with alcoholic KOH to give 7-benzoylindolizine-2-carboxylic acid, m.p. 262° (decomp.), identical with the acid obtained from 2 (X=COPh, R=Et), and was esterified to 2 (X=COPh, R=Me or Et). It is known³ that carboxyl groups in the 1- and 3-positions of indolizine are labile. The methyl ester was different from the 1-carboxylate obtained previously.¹ 4-Cyano-1-p-toluene-

sulphonylpyridinium triflate (1; X=CN) similarly gave 2 (X=CN, R=Me), m.p. 205° (26%), but the yield of 2 (X=H, R=Et) from 1 (X=H) was very low. It seems as though an electron-withdrawing substituent in the pyridine ring is required to give respectable yields of 2. The nature of the products formed in the absence of an electron-withdrawing substituent is under investigation.

A possible mechanism for the formation of 2 would involve a cycloaddition of maleic anhydride to the ylide (3) to give a tetrahydroindolizine, followed

by attack by the alcohol at the C_2 carbonyl, decarboxylation of the C_1 carboxyl, elimination of toluenesulfinic acid and aromatization. 4 Alternatively, Michael addition of $\stackrel{3}{\scriptscriptstyle \sim}$ to the anhydride would give $\stackrel{5}{\scriptscriptstyle \sim}$ which would

then react with alcohol at the more hindered carbonyl group of the maleic anhydride. 5 Decarboxylation and cyclization would then give 4. This stepwise addition and cyclization could account for the observed need for an electron-withdrawing substituent in the pyridine ring.

The ylides $(\frac{3}{2}; X=COPh, Me, CN, H and 3,5-Me_2)$ and phenylcyanoacetylene give 1-cyano-2-phenylindolizines (β)² in moderate yields and β -p-toluenesulphonylcinnamonitrile (7), m.p. 114°.

Ζ

(93)

This work was supported by a grant from the National Institute of General Medicine (GM 16626) for which we are grateful.

REFERENCES

1.	R. A. Abramovitch and V. Alexanian, J. Org. Chem., $\frac{41}{\sqrt{3}}$, 2144(1976).
2.	All new compounds gave the expected spectral and analytical data.
3.	E. T. Borrows and D. O. Holland, J. Chem. Soc., 672(1947).
4.	T. Sasaki, K. Kanematsu, A. Kakehi, and G. Ito, <u>Tetrahedron</u> , $\frac{28}{\sqrt{2}}$, 4947(1972).

5. J. D. Warren, J. H. MacMillan, and S. S. Washburne, <u>J. Org. Chem.</u>, 40, 743(1975).

Received, 30th June, 1976