THE REACTIONS OF CARBONYL YLIDES WITH AZODICARBOXYLIC ESTERS

Helmut Hamberger, Rolf Huisgen, * Volker Markowski, and
Scarlett Sustmann

Institut für Organische Chemie der Universität München,
Karlstr. 23, D-8000 München 2, Germany

Dedicated to Ken'ichi Takeda on the Occasion of His

Seventieth Birthday

The carbonyl ylides, generated by thermal electrocyclic ring opening of 2,3-diaryl-2,3-dicyanooxiranes, combine with azodicarboxylic esters to give primary cycloadducts which eliminate aroyl cyanide and produce α -cyanoarylidenehydrazine- \underline{N}^{β} , \underline{N}^{β} -dicarboxylic esters. Whereas the dimethyl esters are thermostable, the diethyl esters undergo a fragmentation to ethyl α -cyanoarylidenehydrazine- \underline{N}^{β} -carboxylate besides ethylene and carbon dioxide.

Azomethine ylides, which occur in a thermal equilibrium with suitably substituted aziridines, undergo 1,3-dipolar cyclo-additions to azodicarboxylic esters to yield stable 1,2,4-triazolidine derivatives. Analogously, the substituted oxiranes <u>1</u> entertain thermal equilibria with small concentrations of the car-

Ar,
$$CN$$

Ar CN

CN CN

CN CN

CN CN

CN CN

Ar CO_2CH_3
 CH_3O_2C
 CO_2CH_3
 CN
 CN

bonyl ylides 2^{2} The reactions of 1a and b with dimethyl azodicarboxylate at $120-130^{\circ}$ C provided compounds $C_{12}H_{11}N_{3}O_{4}$ (54 %, mp $114.5-116^{\circ}$ C) and $C_{12}H_{10}N_{4}O_{6}$ (50 %, mp $118.5-120^{\circ}$ C), respectively. The expected cycloadducts, the 1,3,4-oxdiazolidines 3, probably suffered elimination of aroyl cyanide. It has been demonstrated that the cycloaddition of the azomethine imines $\frac{4}{3}$ to carbonyl compounds is reversible. Thus, the 1,3-dipolar cycloreversion of 3 should yield the azomethine imines 5 or their stabilization products.

Azomethine imine \underline{N}^{α} , \underline{N}^{β} -dicarboxylic esters which result from interaction of diazoalkanes with azodicarboxylic esters, 5 can undergo a reversible cyclization to 1,3,4-oxdiazolines of type $\underline{6}$ and an irreversible acyl shift to hydrazone- \underline{N}^{β} , \underline{N}^{β} -dicarb-

oxylic esters, 6,7 7 in our example. The properties of the products are indeed in agreement with the hydrazone 7.

3
$$\xrightarrow{-ArCCN}$$
 \xrightarrow{NC} \xrightarrow{O} \xrightarrow{NC} \xrightarrow{NC}

The equivalence of the ester singlets in the nmr spectrum (CDCl_3) , τ 6.05 for 7a and 6.00 for 7b, is consistent with the hydrazone formulae or the diaziridine structure 8, but not with 5 or 6. The carbonyl frequencies (KBr) are unusually high: 1796 for 7a and 1773 cm⁻¹ for 7b; the bond system of 7 corresponds to a diacylimide. The uv spectra (ethanol) allow us to discard 8 in favor of 7: λ_{max} (log ϵ) = 275 (3.91) for 7a, 323 (3.91) and 275 nm (4.07) for 7b. The uv maxima depend only slightly on solvent polarity.

The reaction of α -diazophenylacetonitrile with dimethyl azodicarboxylate at 70° C produced a specimen identical with 7a: the low yield (2 %) limits conclusions. Stronger chemical evi-

dence for 7b comes from the 92 % conversion to the monoester 9 (mp 194-199°C dec.) in refluxing methanol (48 hr). The ir spectrum of 2 (KBr) shows bands at 3125 for NH, 2215 for C=N and 1724 cm⁻¹ for C=0; the acidic NH appears in the nmr at τ -0.5. The uv band of 9 at 321 nm (log ϵ 4.35) undergoes a bathochromic shift by 89 nm on deprotonation to the orange anion (410 nm, log ϵ 4.35) with NaOC₂H₅/C₂H₅OH.

$$(4)-NO_2C_6H_4$$
 CO_2CH_3

$$a : Ar = C_6H_5$$
 $b : Ar = C_6H_4NO_2-(4)$

Whereas the dimethyl ester 7a is stable at 180° C, the corresponding diethyl ester 10a, produced from 1a and diethyl azodicarboxylate at 180° C, undergoes elimination of $C0_2$ and ethylene affording 11a (mp $94-96^{\circ}$ C) in 51 % yield. Fragmentations in the pyrolysis of ethyl esters were formulated via cyclic electron shifts as early as 1938. The p-nitrophenyl compound 10b (mp $64-66^{\circ}$ C) was accessible from 1b and diethyl azodicarboxylate at 140° C in 60 % yield; at 180° C it was likewise converted to

11b (mp 194-186°C dec.). The 262 peak corresponding to the cation of 11b is the base peak in the mass spectrum of 10b.

REFERENCES

- 1 E. Brunn and R. Huisgen, Tetrahedron Lett., 1971, 473.
- 2 H. Hamberger and R. Huisgen, J.C.S. Chem. Commun., 1971, 1190.
- 3 R. Huisgen, R. Grashey, P. Laur, and H. Leitermann, Angew. Chem., 160, 72, 416.
- 4 R. Grashey and K. Adelsberger, Angew. Chem., 1962, 74, 292.
- 5 E. Müller, <u>Ber.Deut.Chem.Ges.</u>, 1914, <u>47</u>, 3001; H. Staudinger and A. Gaule, <u>ibid.</u>, 1916, <u>49</u>, 1961.
- 6 E. Fahr, K. Königsdorfer, and F. Scheckenbach, <u>Liebigs Ann.</u>

 <u>Chem.</u>, 1965, 690, 138; E. Fahr, K. Döppert, and F. Scheckenbach,

 <u>ibid.</u>, 1966, 696, 136.
- 7 G.F. Bettinetti and P. Grünanger, <u>Tetrahedron Lett.</u>, 1965, 2553.
- 8 C.D. Hurd and F.H. Blunck, J.Amer.Chem.Soc., 1938, 60, 2419.

Received, 12th July, 1976