STUDIES ON POTENTIAL ANTITUMOR AGENTS (I). Thiosemicarbazones of p-Chlorophenyl- and m-Chlorophenylpyridine-2-carboxaldehydes

Chao-Tung Chen*, Shih-Fong Chen, and Shwu-Jiuan Lee Institute of Chemistry Academia Sinica Nankang, Taipei 115 REPUBLIC OF CHINA

Thiosemicarbazones of eight p- and m-chlorophenylpyridine-2-carboxaldehydes have been synthesized. The biological activity of these compounds was evaluated by animal test. 4-(p-Chlorophenyl)pyridine-2-carboxaldehyde thiosemicarbazone was found to possess potential antitumor activity with low toxicity.

Thiosemicarbazones of \checkmark (N)-heterocyclic carboxaldehydes, typically of pyridine-2- and isoquinoline-1- groups, have been known to have antitumor activity.¹ 4-(m-Aminopheny1)pyridine-2-carboxaldehyde thiosemicarbazone has been reported to possess potential antitumor activity on mice bearing Sarcoma 180 ascites cells.² This study was undertaken to synthesize further thiosemicarbazones of arylpyridine-2-carboxaldehydes for biological evaluation. 4-(p-Chloropheny1)pyridine-2-carboxaldehyde thiosemicarbazone was found to possess potential antitumor activity with low toxicity.

p-Chlorophenyl-2-picolines were synthesized by a procedure similar to the arylation of picoline with diazotized m-nitroaniline² (Scheme I). p-Chloroaniline (75 g) was diazotized at 0° and the

(239)

resulting solution was added dropwise to 2-picoline (300 ml) at 30-40°. The reaction mixture was kept at 80° for 30 minutes and worked up as usual² to obtain 25 g of a semisolid, which was chromatographed on silica gel eluting with chloroform. Four isomeric p-chlorophenyl-2-picolines (1-4) were obtained. The isomers were differentiated by nmr studies. These structural assignments were consistent with the nmr data, which are shown in <u>Table I</u>. p-Chlorophenyl-2-picolines (1-4) were oxidized with selenium dioxide in refluxing dioxane to p-chlorophenylpyridine-2-carboxaldehydes (5-8), which were converted to thiosemicarbazones (9-12). Relevant data for these compounds are listed in <u>Table II</u>.

m-Chlorophenyl-2-picolines were similarly synthesized. Chromatography of the reaction mixture afforded 4- and 6-(m-chlorophenyl)-2-picoline but 3- and 5-isomers came out as a mixture, which as separated at aldehyde stage by chromatography on silica gel. The compounds of m-chloro series are listed in Table III.

Biological evaluation of these thiosemicarbazones was made on mice bearing Sarcoma 180 ascites cells. 4-(p-Chlorophenyl)pyridine-2-carboxaldehyde thiosemecarbazone was found to possess potential antitumor activity with low toxicity.

Scheme I

Compd	Position of Chlorophenyl Substitution	2-Methyl Protons	Protons on Phenyl and Pyridine Rings	H-6 on Pyridine Ring	Proton of Aldehyde CHO	Solvent
1	3	2.53 (3H, s)	7.13-7.68 (6H, m)	8.65 (1H, dd) J=5.2 Hz		ccı ₄
2	4	2.53 (3H, s)	7.11-7.60 (6H, m)	8.47 (1H, dd) J=5.1 Hz		CDC13
3	5	2.53 (3H, s)	7.05-7.73 (6H, m)	8.66 (1H, d) J=2 Hz		cc1 ₄
4	6	2,53 (3H, s)	6.86-8.01 (7H, m)			CDC13
16	3		7.16-7.90 (6H, m)	8.94 (1H, dd) J=5.2 Hz	10.28 (1H, s)	CDC13
14	4	2.55 (3H, s)	7.23-7.68 (6H, m)	8.67 (1H, dd) J=5.1 Hz		CDC13
18	5		7.40~8.06 (6H, m)	9.05 (1H, d) J=2 Hz	10.23 (1H, s)	CDC13
15	6	2.53 (3H, s)	6.88-8.06 (7H, m)			cci4

Table I. NMR Data*

*NMR spectra were determined with a JEOL-C-60-HL High Resolution NMR Instrument. The Chemical shifts are reported in p.p.m. downfield from internal TMS.

Compd*	R	Position of p-Chlorophenyl Substituent	Mp, °C	% Yield	Formula	Mass Spectra (M ⁺)
1	CH	3	41.5-42	15,1 ^a	C12H10C1N	203
2	CH ₂	4	68-70	16.3 ^a	C ₁₂ ^H 10 ^{CIN}	203
3	CH ₃	5	90- 91	12.3 ^a	$C_{12}H_{10}CIN$	203
4	CH3	6	6 6- 69	56.1 ^a	C12H10CIN	203
5	СНО	3	72.5-73	22 .1 (36 ^b)	C12H8CINO	217
6	CHO	4	97-97.5	20.0(33 ^b)	C12H8CINO	217
7	CHO	5	99-100	61.0(96 ^b)	C12H8C1NO	217
8	CIIO	6	95-97	78.0(145 ^b)	с ₁₂ н ₈ сімо	217
9	CH=NNHCSNH2	3	218-219 (dec)	80.0	C ₁₃ H ₁₁ ClN ₄ S	
10	CH=NNHCSNH2	4	228-230 (dec)	79.0	$C_{13}H_{11}CIN_4S$	
11	CH=NNHCSNH2	5	246-250 (de c)	80.0	C ₁₃ H ₁₁ C1N ₄ S	
12	$CH=NNHCSNH_2$	6	217-218	60.0	$C_{13}H_{11}C1N_4S$	

*Compounds are all new except 2.

^aYield are based on the recovery of various isomers from a mixture obtained in 17.7% yield by the arylation of p-chloroaniline with 2-picoline. ^bReflux time in hours in selenium dioxide oxidation of the 2-picolines.

Table III

Compd*	R	Position of m-Chlorophenyl Substitution	Mp _ð (Bp)	% Yield	Formula	Mass Spectra (M [#])
13 ^a	СН3	3, 5	>300(Bp)	2.70	C12H10C1N	203
14	СН3	4	39-42	1.40	C12HIOCIN	203
15	СНЗ	6	≻300(Bp)	2.80	C12H10CIN	203
16	СНО	3	> 300 (Bp)	79,0(156 ^b)	C12H8C1NO	217
17	СНО	4	86-90	50.0(96 ^b)	C12H8C1NO	217
18	СНО	5	92-96	79.0(156 ^b)	C12H8C1NO	217
19	СНО	6	68-72	78.0(126 ^b)	C12H8C1NO	217
20	CH=NNHCSNH2	3	212-215 (dec)	66.2	C ₁₃ ^H ₁₁ C1N ₄ S	
21	CH=NNHCSNH2	4	216-224 (dec)	80.0	C13H11CIN4S	
22	CH=NNHCSNH2	5	220-221 (dec)	89.9	C ₁₃ H ₁₁ C1N ₄ S	
23	CH=NNHCSNH2	6	182-185	75.0	$C_{13}H_{11}CIN_4S$	

*New Compounds.

^aMixture of 3- and 5-isomers.

^bReflux time in hours in selenium dioxide oxidation of the 2-picoline.

REFERENCES

 F. A. French and E. J. Blanz, Jr., J. Med. Chem., <u>17</u>, 172 (1974).
K. C. Agrawal, A. J. Lin, B. A. Booth, J. R. Wheaton, and A. C. Sartorelli., J. Med. Chem., <u>17</u>, 631 (1974).

ACKNOWLEDGEMENT

This work was supported by a National Science Council Fund through Chemistry Center, to which thanks are due.

Received, 31st July, 1976