SYNTHESIS OF 9-AZAPROSTAGLANDIN ANALOGS

 \mathtt{Gegreg}_2 P. Rozing (1), Henk de Koning , and Henderikus 0 . Huisman Laboratory for Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands

> 9-Deoxy-9-azaprostaglandin analogs are obtained in eight steps, starting from ethyl N-ethoxycarbonylglycinate and diethyl 2-decenedioate.

We recently described the synthesis of 9,11-dideoxy-9-azaprostaglandins (2). In this communication we want to report the synthesis of 9-deoxy-9-azaprostaglandin analogs.

Key compound in the synthetic scheme is the pyrrolidone $\frac{1}{2}$ [IR (CHCl₃) 1760, 1720, 1690, 1670, and 1630 cm⁻¹; NMR (CDCl₃) δ 2.30 (t, $J = 7$ Hz, $-CH_2$ COOEt), 3.28 (d, $J_{8,12} = 3$ Hz, $C_{12}-H$ (3), keto form), 4.9 (m, C_R-H , enol form), 9.8 (br, OH, enol form)], obtained in 40% yield by Michael-Dieckmann reaction (4) (sodium hydride, benzene, 80°C, 2 hr) of ethyl N-ethoxycarbonylglycinate 1 and the substituted acrylic ester \leq (5). The enol form of $\frac{3}{2}$ appeared to be the predominant tautomer as was deduced from the 1 ^{H-NMR} spectrum.

Conversion of the β -keto ester moiety into the mono-protected diol system with the appropriate relative configuration produced

 (325)

the major problem in the synthetic scheme. Several reductions were performed with model compound 1,4-diethoxycarbonyl-5-methylpyrrolidin- ζ -one to find suitable reaction conditions (6). Both catalytic hydrogenation of 3 in ethanol over Adams catalyst and reduction with sodium cyanoborohydride at pH 3 (7) afforded in high yield a mixture of hydroxy esters, from which the predominant isomer $\frac{4a}{5}$ [IR (CHCl₃) 3500, 1730, and 1690 cm⁻¹; NMR (CDC1₃) δ 2.28 (t, J = 7 Hz, $-\text{CH}_2$ COOEt), 2.78 (t, J_{8,12} = J_{11,12} = 5 Hz, C₁₂-H), 3.22 (d d, J_{10a,11} = 6 Hz, J_{10a,10} = 11,5 Hz, C_{40} -H_a), 4.48 (m, C_{41} -H)] was isolated in pure form by column chromatography.

Reduction of $\frac{7}{2}$ with sodium borohydride (0.6 mol equivalent) at -18°C gave a mixture of hydroxy esters, diols, and starting material. Reduction of 3 with a large excess of sodium borohydride (5 chromatography.

Reduction of $\frac{3}{2}$ with sodium borohydride (0.6 mol equivalent) at

-18°C gave a mixture of hydroxy esters, diols, and starting mate:

ial. Reduction of $\frac{3}{2}$ with a large excess of sodium borohydr 2.28 (t, J = 7 Hz, $-C\underline{H}_2$ COOEt), 3.18 (d d, $J_{10\alpha,11}$ = 6 Hz, $J_{10\alpha,10\beta}$ = 11,5 Hz, $C_{10} - H_{\alpha}$, 3.45 (br, exchangeable with D_2 0)] which was purified by column chromatography.

The C_{41} -hydroxy group of $4a$ could be protected as tetrahydropyranyl ether (dihydropyran, p-toluenesulfonic acid) **4b** [95%, IR (CHCl₃) 1720, 1690, and 1020 cm⁻¹] or as tert-butyl ether (BF₃/ $_{\rm H_2PO_4}$, isobutene) $\underline{4c}$ [90%, IR (CHCl₃) 1720, 1690, and 1370 cm⁻¹].

Regioselective reduction of the C₁₂-ester moiety of 4b was achieved with an excess of sodium borohydride in ethanol at room

 (326)

 $R = AC$

 \sim

 (327)

temperature (8), providing $\underline{6b}$ (R' = Et) [IR (CHCl₃) 3500, 1720, 1680, and 1020 cm^{-1} ; NMR (CDCl₃) 8 2.15 (m, C₁₂-H), 2.28 (t, J = 7 Hz, $-C_{H_2}COOEt$), 3.15 (br, exchangeable with D_2O , $-C_{H_2}OH$), 3.58 (d, J = 6 Hz, $-CH₂OH$)] in 45% yield after chromatography over silica gel.

Diol $5a$ could also be converted into a C_{11} -protected primary alcohol, $6d$ (R' = Me), in the following way. Reaction with acetic anhydride in pyridine afforded diacetate $5d$ [100%; IR (CHC1₃) 1730, 1690, and 1240 cm⁻¹; NMR (CDCl₃) δ 2.05 (s, 0COCH₃), 4.12 (d, J = 7 Hz, $-C_{\frac{H}{2}}OAC$), 5.06 (d t, $J_{10\alpha,11} = 3$ Hz, $J_{10\beta,11} = J_{11,12} = 6$ Hz, C_{11} -H)]. Acid catalysed methanolysis of <u>5d</u> gave a mixture of 5a,
5d, and <u>6d</u> in a ratio 20 : 50 : 30, which could easily be separ- $5d$, and $6d$ in a ratio 20 : 50 : 30, which could easily be separ-
ated by column chromatography. After recycling of $5a$ and $5d$, $6d$ $(R' = Me)$ [IR (CHCl₃) 3500, 1730, 1690, and 1240 cm⁻¹; NMR (CDCl₃) δ 3.54 (d, J = 7 Hz, $-CH_2OH$), 3.64 (s, $-COOCH_3$), 5.11 (d t, $J_{10\alpha,11}$ = 3 Hz, $J_{10\beta,11}$ = $J_{11,12}$ = 6 Hz, C₁₁-H)] was obtained in 50% yield.

Moffatt oxidation [dimethyl sulfoxide, 1-cyclohexyl-3-(2-morpholinoethy1)carbodiimide metho-p-toluenesulfonate, trifluoroacetic acid, pyridine and benzene (8)] of the C_{13} -alcohol function in 6b $(R' = Et)$ yielded the corresponding aldehyde which - without further purification - was converted [dimethyl 2-oxoheptylphosphonate, sodium hydride, tetrahydrofuran (9)] into the enone $7b$ (R' = Et) [50%; IR (CHCl₃) 1720, 1680, 1620, and 1020 cm⁻¹; NMR (CDCl₃) δ 0.90 (t, J = 7 Hz, $C_{20} - H_3$), 2.28 (t, J = 7 Hz, $-C_{\frac{H_2}{C}}$ COOEt), 2.54 (t, J = 7 Hz, -CO-CH₂-), 2.8 (m, C₁₂-H), 6.20 (d, J_{13,14} = 16 Hz, C₁₄-H), 6.70 (d d, J_{12,13} = 8 Hz, J_{13,14} = 16 Hz, C₁₃-H)].

Reduction of the C_{15} -carbonyl function in $7b$ (zinc borohydride, dimethoxyethane, room temperature) gave a mixture of the C_{15} epimeric alcohols $\underline{\delta b}$ and $\underline{\delta b}$ (R' = Et) [70%; IR (CHCl_z) 3450, 1720, 1680, and 1020 cm^{-1} ; NMR (CDCl₃) δ 5.57 (m, C₁₃-H, C₁₄-H)] which were not separated. Hydrolysis of the tetrahydropyranyl ether was accomplished with acetic acid, water and tetrahydrofuran (10). The mixture of isomers, thus obtained in 70% yield, could be separated by column chromatography to give prostaglandin analog $8a$ (R' = Et) [IR (CHCl₃) 3450, 1720, and 1670 cm⁻¹; NMR (CDCl₃) 6 0.89 (t, J = 7 Hz, C₂₀-H₃), 2.28 (t, J = 7 Hz, -CH₂COOEt), 2.45

(m, C₁₂-H), 5.54 (m, C₁₃-H, C₁₄-H)] and its C₁₅-epimer <u>9a</u> (R' =

Et) (spectra very similar to <u>8a</u>).

<u>Tert</u>-butyl ether <u>4c</u> was conver $(m, C_{12}-H), 5.54$ (m, $C_{13}-H, C_{14}-H)$ and its C_{15} -epimer $9a$ (R' = Et) (spectra very similar to &).

into the mixture of allylic alcohols 8c and 9c $(R' = Et)$. Cleavage <u>Tert-butyl ether 4c</u> was converted by the same series of reactions
into the mixture of allylic alcohols <u>8c</u> and <u>9c</u> (R' = Et). Cleavage
of the tert-butyl ether with trifluoroacetic acid (11), followed by subsequent methanolysis of the trifluoroacetates gave the prostaglandin analogs. The C_{11} -acetoxy carbinol 6d (R' = Me) could also be converted into the allylic alcohols 8d and 9d $(R' = Me)$ (12), which were deprotected by methanolysis in the presence of potassium carbonate to give $\underline{8a}$ and $\underline{9a}$ (R' = Me).

REFERENCES

- 1 Part of the forthcoming thesis of G.P. Rozing.
- 2 G.P. Rozing, T.J.H. Moinat, H. de Koning, and H.O. Huisman, Heterocycles, 1976, &, 719.
- $\overline{3}$ Prostaglandin numbering throughout this communication.
- R. Kuhn and G. Osswald, Chem. Ber., 1956, 89, 1423. 4
- Prepared by **a** modified Rosenmund reduction of ethyl 7-chlo-5. roformylheptanoate followed by subsequent Wittig-Horner reaction of the aldehyde with triethyl phosphonoacetate.
- Details will be reported in the full publication. 6
- 7 R.F. Borch, M.D. Bernstein, and H. Dupont Durst, *J. Amer.* Chem. Soc., 1971, 93, 2897.
- N. Finch, L. DellaVecchia, J.J. Fitt, R. Staphani, and I. 8 Vlattas, *J.* Org. Chem., 1973, 38, 4412.
- 9 E.J. Corey, N.M. Weinshenker, T.K. Schaaf, and W. Huber, J. Amer. Chem. &., 1969, **a,** 5675.
- E.L. Cooper and E.W. Yankee, ibid., 1974, 96, 5876. 10
- 11 E. Hardegger, H.P. Schenck, and E. Broger, Helv. Chim. Acta, 1967, 50, 2501.
- 12 Some elimination occurred in the Horner reaction.

Received, 7th August, 1976