SYNTHESIS OF 9-AZAPROSTAGLANDIN ANALOGS

Gerard P. Rozing (1), Henk de Koning, and Henderikus O. Huisman Laboratory for Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands

> 9-Deoxy-9-azaprostaglandin analogs are obtained in eight steps, starting from ethyl N-ethoxycarbonylglycinate and diethyl 2-decenedioate.

We recently described the synthesis of 9,11-dideoxy-9-azaprostaglandins (2). In this communication we want to report the synthesis of 9-deoxy-9-azaprostaglandin analogs.

Key compound in the synthetic scheme is the pyrrolidone $\underline{3}$ [IR (CHCl₃) 1760, 1720, 1690, 1670, and 1630 cm⁻¹; NMR (CDCl₃) & 2.30 (t, J = 7 Hz, $-C\underline{H}_2$ COOEt), 3.28 (d, $J_{8,12} = 3$ Hz, C_{12} -H (3), keto form), 4.9 (m, C_8 -H, enol form), 9.8 (br, OH, enol form)], obtained in 40% yield by Michael-Dieckmann reaction (4) (sodium hydride, benzene, 80°C, 2 hr) of ethyl N-ethoxycarbonylglycinate $\underline{1}$ and the substituted acrylic ester $\underline{2}$ (5). The enol form of $\underline{3}$ appeared to be the predominant tautomer as was deduced from the ¹H-NMR spectrum.

Conversion of the β -keto ester molety into the mono-protected diol system with the appropriate relative configuration produced

(325)

the major problem in the synthetic scheme. Several reductions were performed with model compound 1,4-diethoxycarbonyl-5-methylpyrrolidin-3-one to find suitable reaction conditions (6). Both catalytic hydrogenation of $\underline{3}$ in ethanol over Adams catalyst and reduction with sodium cyanoborohydride at pH 3 (7) afforded in high yield a mixture of hydroxy esters, from which the predominant isomer $\underline{4a}$ [IR (CHCl₃) 3500, 1730, and 1690 cm⁻¹; NMR (CDCl₃) & 2.28 (t, J = 7 Hz, -CH₂COOEt), 2.78 (t, J_{8,12} = J_{11,12} = 5 Hz, C₁₂-H), 3.22 (d d, J_{10α,11} = 6 Hz, J_{10α,108} = 11,5 Hz, C₁₀-H_α), 4.48 (m, C₁₁-H)] was isolated in pure form by column chromatography.

Reduction of $\underline{3}$ with sodium borohydride (0.6 mol equivalent) at -18°C gave a mixture of hydroxy esters, diols, and starting material. Reduction of $\underline{3}$ with a large excess of sodium borohydride (5 mol equivalent) at -18°C produced all-<u>trans</u>-diol <u>5a</u> [55%; IR (CHCl₃) 3500, 1720, and 1690 cm⁻¹; NMR (CDCl₃) & 2.1 (m, C₁₂-H), 2.28 (t, J = 7 Hz, -C<u>H</u>₂COOEt), 3.18 (d d, J_{10α,11} = 6 Hz, J_{10α,108} = 11,5 Hz, C₁₀-H_α), 3.45 (br, exchangeable with D₂O)] which was purified by column chromatography.

The C₁₁-hydroxy group of <u>4a</u> could be protected as tetrahydropyranyl ether (dihydropyran, p-toluenesulfonic acid) <u>4b</u> [95%, IR (CHCl₃) 1720, 1690, and 1020 cm⁻¹] or as <u>tert</u>-butyl ether (BF₃/ H₃PO₄, isobutene) <u>4c</u> [90%, IR (CHCl₃) 1720, 1690, and 1370 cm⁻¹].

Regioselective reduction of the C₁₂-ester moiety of <u>4b</u> was achieved with an excess of sodium borohydride in ethanol at room

(326)

temperature (8), providing <u>6b</u> (R' = Et) [IR (CHCl₃) 3500, 1720, 1680, and 1020 cm⁻¹; NMR (CDCl₃) & 2.15 (m, C₁₂-H), 2.28 (t, J = 7 Hz, $-CH_2COOEt$), 3.15 (br, exchangeable with D_2O , $-CH_2OH$), 3.58 (d, J = 6 Hz, $-CH_2OH$)] in 45% yield after chromatography over silica gel.

Diol <u>5a</u> could also be converted into a C_{11} -protected primary alcohol, <u>6d</u> (R' = Me), in the following way. Reaction with acetic anhydride in pyridine afforded diacetate <u>5d</u> [100%; IR (CHCl₃) 1730, 1690, and 1240 cm⁻¹; NMR (CDCl₃) & 2.05 (s, OCOC<u>H₃</u>), 4.12 (d, J = 7 Hz, -C<u>H₂OAc</u>), 5.06 (d t, J_{10α,11} = 3 Hz, J_{10β,11} = J_{11,12} = 6 Hz, C_{11} -H)]. Acid catalysed methanolysis of <u>5d</u> gave a mixture of <u>5a</u>, <u>5d</u>, and <u>6d</u> in a ratio 20 : 50 : 30, which could easily be separated by column chromatography. After recycling of <u>5a</u> and <u>5d</u>, <u>6d</u> (R' = Me) [IR (CHCl₃) 3500, 1730, 1690, and 1240 cm⁻¹; NMR (CDCl₃) & 3.54 (d, J = 7 Hz, -C<u>H₂OH</u>), 3.64 (s, -COOC<u>H₃</u>), 5.11 (d t, J_{10α,11} = 3 Hz, J_{10β,11} = J_{11,12} = 6 Hz, C₁₁-H)] was obtained in 50% yield.

Moffatt oxidation [dimethyl sulfoxide, 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate, trifluoroacetic acid, pyridine and benzene (8)] of the C_{13} -alcohol function in <u>6b</u> (R' = Et) yielded the corresponding aldehyde which - without further purification - was converted [dimethyl 2-oxoheptylphosphonate, sodium hydride, tetrahydrofuran (9)] into the enone <u>7b</u> (R' = Et) [50%; IR (CHCl₃) 1720, 1680, 1620, and 1020 cm⁻¹; NMR (CDCl₃) δ 0.90 (t, J = 7 Hz, C_{20} -H₃), 2.28 (t, J = 7 Hz, -CH₂COOEt), 2.54 (t, J = 7 Hz, -CO-CH₂-), 2.8 (m, C_{12} -H), 6.20 (d, $J_{13,14}$ = 16 Hz, C_{14} -H), 6.70 (d d, $J_{12,13}$ = 8 Hz, $J_{13,14}$ = 16 Hz, C_{13} -H)]. Reduction of the C_{15} -carbonyl function in <u>7b</u> (zinc borohydride, dimethoxyethane, room temperature) gave a mixture of the C_{15} epimeric alcohols <u>8b</u> and <u>9b</u> (R' = Et) [70%; IR (CHCl₃) 3450, 1720, 1680, and 1020 cm⁻¹; NMR (CDCl₃) & 5.57 (m, C_{13} -H, C_{14} -H)] which were not separated. Hydrolysis of the tetrahydropyranyl ether was accomplished with acetic acid, water and tetrahydrofuran (10). The mixture of isomers, thus obtained in 70% yield, could be separated by column chromatography to give prostaglandin analog <u>8a</u> (R' = Et) [IR (CHCl₃) 3450, 1720, and 1670 cm⁻¹; NMR (CDCl₃) & 0.89 (t, J = 7 Hz, C_{20} -H₃), 2.28 (t, J = 7 Hz, $-CH_2$ COOEt), 2.45 (m, C_{12} -H), 5.54 (m, C_{13} -H, C_{14} -H)] and its C_{15} -epimer <u>9a</u> (R' = Et) (spectra very similar to <u>8a</u>).

<u>Tert</u>-butyl ether <u>4c</u> was converted by the same series of reactions into the mixture of allylic alcohols <u>8c</u> and <u>9c</u> (R' = Et). Cleavage of the <u>tert</u>-butyl ether with trifluoroacetic acid (11), followed by subsequent methanolysis of the trifluoroacetates gave the prostaglandin analogs. The C_{11} -acetoxy carbinol <u>6d</u> (R' = Me) could also be converted into the allylic alcohols <u>8d</u> and <u>9d</u> (R' = Me) (12), which were deprotected by methanolysis in the presence of potassium carbonate to give <u>8a</u> and <u>9a</u> (R' = Me).

REFERENCES

- 1 Part of the forthcoming thesis of G.P. Rozing.
- 2 G.P. Rozing, T.J.H. Moinat, H. de Koning, and H.O. Huisman, <u>Heterocycles</u>, 1976, <u>4</u>, 719.

- 3 Prostaglandin numbering throughout this communication.
- 4 R. Kuhn and G. Osswald, <u>Chem. Ber.</u>, 1956, <u>89</u>, 1423.
- 5 Prepared by a modified Rosenmund reduction of ethyl 7-chloroformylheptanoate followed by subsequent Wittig-Horner reaction of the aldehyde with triethyl phosphonoacetate.
- 6 Details will be reported in the full publication.
- 7 R.F. Borch, M.D. Bernstein, and H. Dupont Durst, <u>J. Amer.</u> <u>Chem. Soc</u>., 1971, <u>93</u>, 2897.
- 8 N. Finch, L. DellaVecchia, J.J. Fitt, R. Staphani, and I. Vlattas, <u>J. Org. Chem</u>., 1973, <u>38</u>, 4412.
- 9 E.J. Corey, N.M. Weinshenker, T.K. Schaaf, and W. Huber, J. <u>Amer. Chem. Soc.</u>, 1969, <u>91</u>, 5675.
- 10 E.L. Cooper and E.W. Yankee, *ibid.*, 1974, 96, 5876.
- 11 E. Hardegger, H.P. Schenck, and E. Broger, <u>Helv. Chim. Acta</u>, 1967, <u>50</u>, 2501.
- 12 Some elimination occurred in the Horner reaction.

Received, 7th August, 1976