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The theoret ica l  and p rac t i ca l  bases of the 

metal-ammonia and re la ted  reductions of 

heterocyclic compounds a r e  reviewed. No 

attempt t o  summarise a l l  extant  r e su l t s  has been 

made, but ra ther  a c r i t i c a l  evaluation of 

possible procedures is i l l u s t r a t e d  by 

per t inent  examples. The headings i n  order are:  

Introduction, s t ructure  and reducibi l i ty  

The addition of the f i r s t  electron 

Further reactions: (i) Protonation of A$ 

(ii) Dianion formation (iii) Dimerisation 

Cleavage reactions 

Oxygen heterocycles 

Sulphur heterocycles 

Results of d i f fe ren t  proton a v a i l a b i l i t i e s  

Uniquely available compounds 

Introduction 

Useful pract ica l  variants of reduction reactions by a l k a l i  

metals i n  amonia o r  re la ted  solvents continue t o  evolve. However, 

a close appreciation of the theoret ica l  background is needed i n  order 



t o  choose the correct  conditions fo r  a given substance and a desired 

resul t .  While a theoret ica l  basis has been discussed fo r  

carbocyclic aromatic substances, no systematic examination has been 

made of heterocyclic compounds. Some aspects have been reviewed 

i n  more general a r t i c l e s  1,2,3 

The aim of the  present review is t o  survey resu l t s  i n  key 

instances, and t o  r e l a t e  the theoret ica l  aspects t o  the experimental 

conditions needed t o  achieve defined objectives. I t  i s  possible 

a number of fa i lu res  i n  the p a s t  can be a t t r ibuted t o  the  use of 

unsuitable conditions. 

For convenience, this survey can be re la ted t o  two aspects: 

an i n i t i a l  addition of one o r  of two electrons and how t h i s  is 

affected by s t ructure  and conditions, and the  subsequent fa tes  of 

the radical  anions o r  dianions so generated. 

The decisive s t ep  i n  a reduction i s  addition of the f i r s t  

electron. Reducibility may be defined i n  terms of whether t h i s  

happens t o  an extent  which makes possible fur ther  steps. These can 

include overall  hydrogenation, involving another electron and two 

protons; hydrogenative dimerisation, involving two protons, and 

possible fur ther  s teps  of electron and proton addition; isomerisation, 

cleavage, and so for th .  The r e s u l t s  a re  c r i t i c a l l y  dependent on the 

nature of the  i n i t i a l  substrate,  and the  reaction conditions. An 

understanding of the  mechanisms of the processes is required i n  order 

t o  suggest appropriate conditions f o r  a given substrate and a required 

result .  
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The summary of the major possible reactions is shown below, 

where A' represents an isomerised product 

The f i r s t  electron 

The f i r s t ,  and usually rate-limiting stage, is the reversible 

addition of a solvated electron i n  what amounts t o  an in ternal  

4 
e lec t ro ly t i c  reduction . For a substrate A, the equation may be 

written 

M+ 
+ e 

S O ~ V ~ * - '  solvp + A S O ~ V ~  % o l + ~ . . ~  so1v5 

To study the posit ion of such an equilibrium, which is probably a 

slow reaction compared with most subsequent stages, and the concentration 

[A*] which probably defines the overall  r a te ,  the s t ructura l  and 

solvation factors  must be a t  l e a s t  qual i ta t ively  elucidated. 

The revers ib i l i ty  of the addition can be shown i n  a number of 

instances by subsequent electron t ransfer  t o  another substrate of 

lower reduction potent ia l ,  or  by electrochemistry (see below). 

Subsequent f a s t  processes may obscure the revers ib i l i ty  under some 

conditions. 

(i) The solvent 

S o l q  and solv5 are  probably not very di f ferent ,  depending 

on the  other ionic  interactions represented; cer ta inly  solvation 

of the cation i s  very important. S o l q  i s  probably not energetically 

very important, but it does define the so lub i l i ty  of A. Solv2 and 



solvt, are  very important; the extent and nature of the f i r s t  determines 

the so lub i l i ty  of the metal i n  ways still not en t i re ly  c lear .  There 

may be two opposing effects  with solv2: the greater it is the more 

soluble the metal is  l ike ly  t o  be, on the other hand the greater a l so  

w i l l  be the energy required t o  desolvate the electron i n  forming A-*. 

Ammonia appears t o  be a par t icular ly  good solvating agent fo r  the  highly 

mobile electrons,  which probably associate with the posit ive,  hydrogen ends 

5 
o f t h e  dipoles . There i s  evidence from general aromatic reductions 

tha t  electrons i n  amines are  more 'active '  than i n  ammonia, possibly 

because of temperature differences, but a l so  probably because of the  

lower solv2 t o  be expected. Solv!, is important in s tab i l i s ing  the 

radical  anion. These considerations add up t o  a ra t ional lsa t ion of 

the superiori ty of polar solvents, and the  par t icular  importance of 

amines. 

The macroscopic d i e l e c t r i c  constant of the solvent i s  not 

necessari ly meaningful f o r  the small mobile electron but may be fo r  

ions. The extent  of dimerisation of the  quinoline radical  anion (1) 

can be re la ted t o  it. In THF (E 7.6) t h i s  radical  dimerises t o  a 

6 
dianion, but  remains monomeric i n  the more highly solvating HMPA (E 46) . 
Electrochemically generated (1) i n  l iquid  ammonia appears from cyclic 

7 voltammetry t o  be dimeric, although no dimer was formed i n  ammonia 

8 
by the chemical reduction of quinoline . The pyridine radical  anion 

6 
dimerises rapidly even i n  HMPA , a s i tuat ion a l so  ref lected i n  the 

products of reduction by L ~ - N H ~ . '  In many cases an equilibrium 

probably e x i s t s  between radical  anion and dimeric anion. 
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Choice of solvent depends on a number of fac tors  t o  be assessed i n  

a given case. Many heterocyclic compounds are  f a i r l y  o r  completely 

soluble i n  ammonia. Anhydrous ethylenediamine is a good solvent, 

and admixed ethers can be used, such as  dioxan, THF o r  par t icular ly  

dimethoxyethane. With insoluble compounds it is good pract ice  t o  

dissolve, even by heating, i n  a solvent such a s  DME, then t o  add t o  

l iquid  m n i a  i n  a regulated manner t o  precipi ta te  f inely  divided 

sol id .  

Of the metals, L i  is the most soluble i n  a l l  of the range of 

mines. Na o r  K are  l i t t l e  soluble, except i n  anunonia, although 

the l iquid  Na-K al loy is observably soluble i n  a solvent such as  



ethylenediamine. For many purposes Na i n  pure r e d i s t i l l e d  NH3 i s  

10 sa t is factory  . Organic solvents i n  ammonia usually decrease metal 

solubi l i ty ;  crown ethers  might be expected t o  increase it, but have 

not been examined. 

In re la t ion t o  possible base-catalysed processes, which are  

often desirably avolded, LiNH2 i s  l e s s  soluble and l e s s  basic than 

NaNH2 o r  KNH2. The l a s t  amide i s  par t icular ly  soluble and basic and 

K may be preferable i f  intermediate s a l t s  a re  required t o  p e r s i s t  u n t i l  

work-up. 

The solvent i s  important i n  connection with the possible range of 

temperatures of reactions which are  frequently, though not invariably, 

carr ied  out a t  the b.p. and can be carr ied out below the m.p. of pure 

solvent by using mixtures, f o r  example of ammonia with methylamine. 

Ranges a re  ammonia -80' t o  -33', ethylamine -81' t o  17' and 

ethylenediamine 8' t o  116'. Although higher temperatures promote both 

s o l u b i l i t i e s  and the  primary reductions, loss  of metal by secondary 

reaction with the solvent is a l so  marked, and fur ther  reductions may 

resul t .  Selective reductions are  bes t  carr ied  out a t  the lowest 

possible temperature. 

(ii) The s t ruc tu ra l  fac tors  

Some general factors  apply t o  a l l  organic compounds. Stabi l i sa t ion 

of A by special  features such a s  aromatic character w i l l  tend t o  inh ib i t  

reduction. Any special  characters which s t a b i l i s e  A* fo r  example, 

po la r i sab l l i ty  o r  r e l i e f  of s t e r i c  s t r a i n ,  w i l l  favour reduction. In 

the l a s t  connection the  geometry of A? seems1' t o  be similar t o  A,  

although it is ra ther  more moblle. This contrasts  with A= which 

12 exhibi ts  complete conformational mobility . 
Structural  factors a s  discussed i n  the l i t e r a t u r e  fo r  organic 

compounds i n  general of course apply. C X  has a low electron a f f i n i t y ,  

( 910 ) 
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whereas CZN has a r e la t ive ly  high electron a f f in i ty .  I n i t i a l  

discussions below a r e  concerned chief ly  with aromatic heterocycles 

since the non-aromatic ones behave as  would be expected from known 

general chemistry1'*. A few ra ther  specia l  i l l u s t r a t i v e  cases may be 

noted, par t icular ly  i n  connection with f i ss ion processes (below). 

An example of CZN t o  CH-NH is the conversion of imidazolines i n t o  

imidazolidlnes13, a s t ep  i n  a synthesis of aldehydes. This reduction 

is t o t a l l y  se lec t ive  i n  re la t ion t o  a benzene ring i n  the same 

molecule. 

The s t ructure  of A determines i t s  electron a f f i n i t y ,  which, i n  the 

gas phase, can be defined by the l eve l  of the lowest unoccupied 

molecular o r b i t a l  (LUMO): the lower t h i s  is, the more rapid is 

reduction. Since these levels can i n  principle be calculated, t h i s  

term provides a base against  which other perturbing fac tors  such as  

solvation can be s e t  141L5. In  a se r i e s  of s imi lar  molecules, under 

s imi lar  experimental conditions, the LUMO can be re la ted  t o  the ease 

of reduction i n  the ser ies .  Ab initio molecular o r b i t a l  calculat ions 
16 

on the energies of the LUMO indicate pyridine < benzene < furan < pyrrole 

which is the experimentally observed order of decreasing ra tes .  A 

related series1? gives thiophene < furan. The only d i r e c t  consideration 

i n  the l i t e r a t u r e  of these kind of calculat ions i n  re la t ion t o  heterocyclic 

reductivity18 glves quinoline < naphthalene < N-methylindole < benzene, 

which a l so  agrees with experimental r e s u l t s  and the more qua l i t a t ive  

s t ruc tu ra l  fac tors  discussed below. Since t h i s  kind of calculation 

ignores special  fac tors  i n  A?, such as  po la r i sab i l i ty  due, f o r  example 

t o  atoms l i k e  S, the calculat ions cannot be taken too seriously fo r  

comparisons outside a re la ted  ser ies .  



In discussing the influence of s t ructures  the most meaningful 

measurement of reducibi l i ty  in  solution would be a ra te ,  but such 

measurements hardly ex i s t .  The reaction r a t e s  of e 
anunon. 

with the 

+ 
se r ies  NHI, > imidazole >> pyridini  > thiophene > pyrrole19 is 

+ 
probably a measure with the f i r s t  two of reaction with solvated H , 

+ 
( i . e .  NHI, ) due t o  high acidi ty ,  rather than t o  reduction of the  r ing 

of imidazole. 

A more extensive se r ies  of relevant measurements involves 

14 
polarographic studies of reduction potent ia ls  . The half-wave 

potent ia ls  of heterocyclic compoundsz0 a re  quanti tat ive indications 

of reducibi l i ty  under the experimental conditions used. Of par t icular  

i n t e r e s t  i s  the examination 21r22 of azines by polarography and cyclic 

voltammetry i n  DMF o r  ace ton i t r i l e .  The trend of ease of the f i r s t  

electron addition i s  pyridine < biphenyl < naphthalene < pyrimidine < 

isoquinoline < quinoline < acridine.  Agreement is usually found when 

the s e r i e s  of half-wave potent ia ls  i s  compared with energies of the LUMO's. 

An e a r l i e r  paperz3 s e t s  out similar conclusions, and shows a small 

negative s h i f t  fo r  an extra  alkyl group. This could be interpreted a s  

due t o  the  normal inductive e f fec t  of such groups, but since an a lkyl  

group is more polarisable than hydrogen, s t e r i c  interference with solvation 

of A* is a l ike ly  factor.  

For many simple aromatic heterocycles the half-wave potent ia ls  

cannot be determined i n  the usual solvent systems since it l i e s  above 

the solvent o r  supporting e lect rolyte  l i m i t .  Few data are  available 

fo r  l iquid  m o n i a  as a solvent. However, t h e s i n g l e  value of -1.56V 

for  quinoline7 closely resembles the -1.60V found i n  DMF'~, and trends 

of resu l t s  a re  l ike ly  t o  be similar.  
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The formation of  A2 could possibly be examined by e.s.r.  

measuremnts, b u t  t he  simple he terocycl ic  systems o f t e n  do not  form 

24 observable primary r ad ica l  anions . None has been observed w i t h  

thiophene, although evidence from der iva t ives  suggests t h a t  i t  is of  

25 26 
higher energy than t h a t  from benzene . The pyrroleZ6, indole , 

f ~ r a n ~ ~  and oxazole2' r a d i c a l  anions a r e  observable only under very 

spec ia l  conditions. Their i n s t a b i l i t y  t o  cleavage o r  o ther  secondary 

processes 26127 i s  r e f l ec t ed  i n  t he  products of  reac t ions  a s  discussed 

below. 

In p r a c t i c a l  s i t u a t i o n s  i n t u i t i v e  inspect ions of formulae help 

i n  the assessment of reducib i l i ty .  In five-membered heterocycles 

(2,X O,NR,S) the nature of X seems t o  a f f e c t  electron-addit ion i n  

r e l a t i o n  t o  the predic table  pa r t i c ipa t ion  of the X lone p a i r  i n  the 

aromaticity. The order  of bas i c i ty  of X, NR > 0 i s  a l s o  the  reverse 

order  of reducib i l i ty .  Since NR,O,S a r e  a l l  more bas i c  than CrC, 

r educ ib i l i t y  would be expected t o  occur with more d i f f i c u l t y  than the  

corresponding benzene. However, t h e  nature of the intermediate A2 

is a l s o  pe r t inen t ,  and it may well  be s t a b i l i s e d  by more polar i sable  

atoms such a s  S, and may explain why thiophenes are  reducible.  

Nitrogen poses a p a r t i c u l a r  problem because of the a c i d i t y  of NH 

i n  pyrro le  o r  imidazole o r  s imi l a r  s t ruc tu re s ,  which usual ly r e s u l t s  

8 
i n  a l t e r a t i o n  of the subs t ra te  under the experimental conditions from 

t h e  neu t r a l  molecule t o  t h e  anion. The charge on this anion w i l l  

p ro t ec t  t he  r i n g  from fu r the r  e lec t ron  addit ion.  To have any chance 

of reduction a t  highly bas i c  pH (which normally e x i s t s  i n  these 

reductions) the group must be N-alkyl o r  a more a c i d i c  buffer  must 

- 
be added. I n  base interchanges the  r a t e  of reac t ion  of  NH2 with an 

ac id  is very much g rea t e r  than t h a t  of an e lec t ron;  sodamide f o r  



instance generates a s a l t  from indole very much f a s t e r  than does 

sodium metal, so t h a t  appropriate buffering may permit reductions 

even of ac idic  systems. 

28 
Experimentally, simple thiophene derivatives a r e  reducible , 

but furans only under forcing conditionsz9 unless an anion-stabil ising 

30 group such a s  C02H is present  . Pyrroles have not been reduced and 

31 
even N-alkyl pyrrole carboxylic acids can be reduced only very slowly . 
This order of reducibi l i ty  is a s  predicted by the calculated electron 

a f f i n i t i e s .  N-Methylpyrrole's resistance t o  reduction may i n  p a r t  

be ra t ional ised by the f a c t  t h a t  a negative charge a t o  nitrogen, a s  i n  

32 the radical  anion (3). is especial ly unfavoured . 
Six-membered r ings  such a s  (4) require the  presence of a 

t r i v a l e n t  atom such a s  N t o  e x i s t  as  a neutra l  molecule. Cations 

such a s  oxonium s a l t s  would be expected t o  be readily reducible, and 

they a re .  

p l a l i t a t i v e l y ,  reductions can be a lso  cons~dered i n  terms of 

probable e f f e c t s  of hetero-atoms on A*. One outstanding e f f e c t  is  due 

t o  the higher e lec t ron-aff in i ty  of N i n  r e la t ion  to C, so t h a t  when N 

can provide a s i t e  fo r  a negative charge i n  A* reduction is f a c i l i t a t e d .  

That pyridine is  more readi ly  reducible than benzene can be ra t ional ised i n  

terms of an intermediate of type (5). For pyrazine (61, pyridazine (7) and 

s - t r i az ine  (8) the  anionic intermediates have s t ructures  which accord on 

these grounds with the experimentally determinedz1 order of half-wave 

potent ia ls  pyridine > pyrimidine > pyridazine > pyrazine > s- t r iaz ine .  

Other examples are  complicated frequently by ring-cleavages, which may 

occur t o t a l l y  and i r revers ib ly  even i f  the  concentration of A* is very 

low. High nuclear charge ( S )  might be expected t o  s t a b i l i s e  A*, a s  
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noted, charge concentrated next to N is somewhat unfavourable [compare 

pyrazine (6) more reducible than pyridazine (7)]. 

Extension of saturation,  permitting fur ther  delocalisation of 

charge i n  A? would be expected t o  favour reduction. This delocalisation 

i s  notably ass is ted by aromatic annelation (e.g. quinoline, isoquinoline, 

33 indole) o r  by carboxyl substi tution . For example, furan is not 

30 reducible by Li-NHQ, but 2-furoic acid can be readily reduced . The 

expected posit ive s h i f t  i n  half-wave potent ia l  for several aromatic acids 

has been observed i n  our laboratory31 using a c e l l  similar t o  Bard's 

preliminary c e l l  
34. 

Quaternisation is an extreme case of fac i l i t a t ion  by s t ructura l  

change; fo r  example pyridinium s a l t s  show a much lowered E 
21 

J? - 
A fur ther  factor  i n  considering reducibil i ty is the frequent 

occurrence of 2A* f A--A-; clearly the more s table  the l a t t e r ,  the 

more the i n i t i a l  electron addition takes place. Because of 

revers ib i l i ty ,  products can correspond e i the r  t o  further reactions 

- 
of A* o r  of A - A  . 
Further reactions 

(i) Protonation of A* ltvo further reactions of A* can occur: 

addition of another electron t o  form A x ,  o r  protonation t o  *AH. The 

l a s t  reaction can occur i f  a su f f i c ien t ly  acidic proton source i s  present, 

which may not include the  ammonia o r  mine  solvent, addition of an 

alcohol o r  other 'acid' being necessary. A proton can be acquired 

only during work-up i n  some instances. The expected low b a s i c i t i e s  

of mesomeric radical  anions i n  re la t ion t o  similar anions was noted 

many years ago35, requiring more acidic proton sources fo r  reaction. 

In determining the nature of the product from A* the  f i r s t  question 

concerns the posit ion of addition of a proton t o  a mesomeric system. 



Q'he ?i-electron densi t ies  i n  carbocyclic radical  anions seem t o  be 

useful guides t o  the s i tuat ions  of protonation 
36,37 , but  the va l id i ty  of 

the concept f o r  heterocycles has not been demonstrated. Also, the  i n i t i a l  

protonation fo r  carbocycles i s  irreversible3*, but t h i s  may not  be so 

f o r  protonation, par t icular ly  on a heteroatom such as N. 

E.s.r. s tudies i n  conjunction with MO calculations enables 

examinations of electron spin densit ies.  The suggestion3' t h a t  

protonation occurs a t  the posit ion of highest spin density corre la tes  

products of reduction of polycyclic aromatic carbocyclic compounds, 

36 
despite neglect of s t e r i c ,  solvation, and counter-ion factors  . 

Experimental data are availablez4 f o r  heterocyclic compounds, 

mainly six-membered nitrogen-containing aromatics, including pyridine, 

quinoline, acridine6, and pyridines with aUryl, OMe, C02H substi tuents 
39 

and re la t ions  between calculated and experimental spin-densities a re  

usually good. However, i n  protonation reactions N has a specia l  

si tuation.  Although i n  pyridine and quinoline radical  anions the 

4-position has the highest ii-electron density,  and the  N only the 

second highest, e . s . r .  s tudies  of the pyridine radical  generated by Na-NH3 

39 
i n  the presence of EtOH suggests the  structure (9) . 

Similarly alkylation of the electrochemically generated quinoline 

radical  anion i n  NH3 leads to s t ructure  (10). The process of 

protonation o r  alkylation requiu?slocalisation of a pa i r  of electrons,  

and the  ava i l ab i l i ty  of the  nitrogen p-electrons may well play a special  

par t  i n  the process. 

Radicals resul t ing from monoprotonation can dimerise, o r  can add 

another electron t o  produce a mesomeric monoanion (e.g. 12) which may o r  

may not be iden t ica l  with t h a t  formed by monoprotonation of a dianion. 

This question is discussed l a te r .  
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(ii) Dianion formation Despite the negative charge on a 

radical  anion, the addition of a second electron in to  the same orb i t a l ,  

t o  give a dianion, can occur. The resul t ing s a l t s  e x i s t  presumably 

as ion-pairs. Liquid ammonia, a s  a dipolar hydrogen-bonded solvent, 

18 seems par t icular ly  effect ive  i n  s t ab i l i s ing  dianions . Direct 

evidence of the i r  existence comes from electrochemical studies i n  

NH3, where dianions have been observed, i n  contrast  t o  some other 

polar solvents 
34,40 With a few exceptions such as noted below, 

the radical  anion i s  more d i f f i c u l t  t o  reduce than the s t a r t ing  

material, so the poss ibi l i ty  of dianion formation is controlled by the 

reduction potent ia l  of A? and by the reduction potent ia l  and 

proportion of metal used. However, products i n  some cases may 

correspond t o  dianion, even i f  t h i s  is present i n  low concentrations 

in  an equilibrium. Because of i ts  high basicity,  fur ther  reactions, 

par t icular ly  protonation by the solvent, can lead i r revers ibly  t o  

complete conversion to a monoprotonated monoanion (see below). Some 

dianions a re  re la t ively  s table  t o  ammonia, fo r  example acridine forms 

with just  2 L i  a dianion which can be methylated t o  (14) 
41,42 

Particular factors such a s  an electronic configuration conferring 

c lass ica l  aromaticity, r e s u l t  i n  s table  dianions. One c lass  of 

examples is a s e r i e s  of 2-metho~yazocines~~ which readily give the  

type (13) bes t  using K-NH3. These s a l t s  contain an aromatic 



l0n-electron system, a t t e s ted  by a r ing  current t o  be associated 

43 with a planar f u l l y  delocalised s t ructure  . The two electrons a re  

added a t  the same potential44 in THF o r  DMF, suggesting that  the 

second is  a t  l e a s t  a s  readily added a s  the f i r s t .  The e f fec t s  of 

43,45 
annelation o r  alkylation t o  (13) have been examined i n  d e t a i l  

H Me 

OMe 

(13) Me (14) Me (18) 

Evidence is available of formation of unstable dianions which rapidly 

undergo fur ther  reactions, notably removal of a proton from the  solvent. 

The evidence indicates tha t  the most basic centre of mesomeric dianion, 

f o r  example the 4-position of the  quinoline dianion, is a t  l e a s t  

- 
comparable i n  strength t o  NH2 (pK ammonia about 34-35). Quinoline a 

reacts  rapidly with about 2.5 Li i n  NH3 t o  give the  anion (15) as the 

8 
observable product which can be p r ~ t o n a t e d ~ ~  o r  alkylated t o  (16, R=H 

o r  alkyl respectively).  Intermediate production of the dianion (17) and 

proton-abstraction from the solvent NH3, i s  supported by the  incorporation 

of D a t  C-4 when the reaction occurs i n  ND3. Further evidence i s  t h a t  the 

l,4-dimethyl product (18) r e s u l t s  from addition of excess Me2SOq together 
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with quinoline t o  Li-NH3 a t  -70°, when methylation competes 

8 
favourably with protonation . Without examination of k inet ics  

it is not possible t o  be absolutely certain tha t  such a process 

does not involve successive processes, beginning w i t h  methylation of a 

radical  anion. However, examination of substituted quinolines f i t s  

the dianion picture.  The reductive methylation of 4-phenylquinoline 

i n  which the group would be expected t o  s t a b i l i s e  a 4-anion, gives 

42 
r i s e  t o  1,4-dihydro-l,4-dimethyl-4-phenylquinoline i n  100% yie ld  , 

and i n  67% y ie ld  even using a subsequent addition of MezSO4. 

4-Methylquinoline gives >90% yie ld  of the 1,4,4-trimethylquinoline 

derivative and only a trace of the 1,4-dimethylquinoline42, 

The ru le  fo r  reductions appears t o  be tha t  the more basic 

negative charge i n  a dianion which can be readily localised i s  probably 

most rapidly protonated. A thermodynamic ra ther  than kinet ic  view 

of the  same process leads to the suggestion tha t  a monoprotonated 

anion formed corresponds t o  the most acidic of the possible 'ac ids ' .  

The remaining charge is t o  be found on nitrogen in  the quinoline series.  

Both approaches lead t o  the same predictions i n  t h i s  series.  

A close examination of quinoline derivatives 8,42 
has served t o  

demonstrate the necessity for  str ingent control of experimental 

conditions: t h i s  aspect i s  discussed l a te r .  

A single experiment4', points t o  the poss ibi l i ty  of reductive 

methylation of isoquinolines by reporting formation of (19), a r esu l t  

42 
which has been confirmed . The production of an intermediate dianion 

i n  t h i s  type of r ing is supported by the observation t h a t  

1-phenylisoquinoline gives a substantial  yield of the l,2-dimethyl 

42 
derivative together with some of the 2-methyl derivative . The 

greater extent of protonation i n  the isoquinoline compared with the 



corresponding quinoline may be correlated with the lower s t a b i l i t y  

(higher bas ic i ty)  of the dianion. The s l i g h t l y  higher E of ?2 
21-23 

isoquinoline compared with quinoline is  an index of higher energy 

and more reactive intermediates. 

In some other cases ind i rec t  evidence e x i s t s  f o r  the  production 

of dicarbanions, where the heteroatom is not d i rec t ly  involved. By 

analogy with benzoic acid48, 2-furoic acid is readi ly  reduced with 

Li-NH3 and the  dicarbanion carboxylate s a l t  (20) may be an intermediate 

30 
t o  the observed i n i t i a l  product (21) . However, i n  view of the  

+ + stoichiometric a v a i l a b i l i t y  of H from C02H(NH4 ) the  radical  anion 

(22) may be protonated and then fu r the r  reduced t o  (21). Electrochemical 

31 
investigations of t h i s  problem a r e  in progress . 

Alternative products i n  some instances may be due t o  a l t e rna t ive  

reactions involving radical  anions o r  dianions. The reduction of 

benzene r ings  i n  presence of alcohols is made possible by protonation 

2 of an i n i t i a l  r ad ica l  anion . It  seems probable t h a t  the  reduction 

of the benzene r ing of indole, o r  of N-methylindole18, t o  the 

4,7-dihydro derivatives (23), (R=H or M e )  i s  due t o  such a process, which 

is a rapid one. It may be f a c i l i t a t e d  i n  the case of indole i t s e l f  

by in te rna l  t ransfer  of a proton, since a rad ica l  anion (11) can be 

26 
detected under spec ia l  i so la ted  circumstances i n  a matrix . A very 

( 920 ) 
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much slower reduction, i n  absence of any added proton source, of 

N-methylindole prcduces the 2,3-dihydro derivative (24) which might 

18 
go through the dianion (25) . This is  not a very a t t r a c t i v e  proposal, 

because of the necessity of the ~ n f a v o u r a b l e ~ ~  local isa t ion of the 

charge a t  C-2. Another poss ib i l i ty  i s  the base-catalysed isomerisation 

of (23), i n i t i a l l y  obtained, t o  produce (24). Further work seems 

required. 

(iii) Dimerisation An important fur ther  reaction, par t icular ly  

with pyridine derivatives6", i s  dimerisation t o  y ie ld  i n  the f i r s t  

instance a dimeric dihydro-derivative. The r a t i o  of hydrogenation 

to reductive dimerisation is dependent on experimental conditions, 

par t icular ly  on the solvent and the presence o r  absence of a proton 

7 
source. minol ines  are  l e s s  prone t o  dimerisation than pyridines . 

?*lo mechanisms could operate. Electrochemical studies of 

7 quinollne i n  NH3 suggest a pairing of radical  anions, despite the 

negative charge on each. Charge repulsion may be compensated by 

ion pairing. 

-..-A - 
2A* r;-- A-A- 

21 Coulometric studies of pyrazine o r  pyrldazine i n  DMF, by 

contras t  suggest a reaction of radical  anlon with the start ing-material ,  

a type of process re la ted  t o  the well known addit ions of anions t o  such 

systems: 

A* + A -+"A-A* 

E . s . ~ .  exammatlons of a number of pyridine d e r ~ v a t i v e s  
39 

indlcate rapid formations of anion radicals  corresponding to dlmeric 

products, although the 4-methylpyridine products decay rapidly t o  

diamagnetic compounds of unlr;nown nature. 

( 921 



Cleavage reactions 

Because of the higher e lec t ron-aff in i t ies  of hetero atoms 

such a s  O,N,S, compared with carbon atoms, a widespread reaction,  

not  found with carbocycles, i s  r ing cleavage. This may be desirable,  

o r  may require t o  be avoided i f  possible, according to circmstances.  

With most non-aromatic compounds the same kind of m l e s  hold a s  

with acycl ic  structureslf12, so t h a t  only a b r i e f  sununary is needed. 

There a r e  two major processes, d i r e c t  cleavage and base-catalysed 

elimination. 

(i) Direct  cleavage This occurs with diary1 e thers ,  some a l l y 1  

e the r s  and most benzyl ethers.  The corresponding nitrogen compounds a r e  

usually unaffected, while s imi lar  sulphur derivatives are  more readily 

cleaved. Some indication of the likelihood of the process can be 

obtained by considering the  e f f e c t s  of s t ructure  on a t r ans i t ion  s t a t e  

- 
of type -c---X*U*C---x . Any fac to r s  which s t a b i l i s e  negative charge 

on e i t h e r  C o r  X f a c i l i t a t e  f i ss ion.  The order of r a t e s  S > 0 >> N 

f i t s  t h i s  picture,  re la ted  t o  the order of a c i d i t i e s  SH > OH >> NH. A 

lactone, f o r  example, reacts  much more readi ly  than a corresponding 

ether.  

A few examples are  the tetrahydrofuranoid l i g n a n ~ ~ ~  and catechins 

(26)" which a r e  benzylic ethers.  An example i n  the S se r i e s  is 

2,5-dihydrothiophene (below) . 
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More subt le  e f f e c t s  due t o  r i n g  s i z e  o r  other  s t ruc tu re s  have not  

been invest igated.  A po in t  of i n t e r e s t  with cyc l i c  a l l y 1  der iva t ives  

is t h a t  because of loca t ion  of  the double bond i n  a r i ng ,  f i s s i o n  products 

a r e  ~ i s - o l e f i n s ~ ~  (see a l s o  configurat ions of  t he  aromatic products 

below). Cleavages of quaternary ammonium s a l t s  by Na-NH3 af ford  

an a l t e r n a t i v e  procedure t o  the c l a s s i c a l  mde reduction, usual ly 

52 
f r e e  of base-catalysed s ide  reac t ions  . 

(ii) Base-catalysed f i s s i o n  This usually r e s u l t s  from an 

-'*. n 
elimination of  the type C-C-X -+ C X  + xX-. It can r e s u l t  from an 

anion produced by reduction, o r  from deprotonation due t o  the  bas i c  

- 
condit ions,  such a s  the presence of NH2 . The f i r s t  s i t u a t i o n  may 

be  unavoidable, o r  des i rable .  The second, may be i n  some cases avoided 

by Suffering,  o r ,  i f  des i rable ,  de l ibe ra t e ly  induced by providing 

the bas i c  conditions. I n  any case t h e  p o s s i b i l i t y  has t o  be 

ca re fu l ly  considered i n  r e l a t i o n  t o  t h e  nature of the s ta r t ing-mater ia l  

and the  circumstances. 

One example30 i s  the f i s s i o n  of (27) which occurs under some 

condit ions i n  t he  reduction of 2-furoic ac id .  

c o p  
00 

CO,@ C02H 

(27) 

OMe OMe 



A pa r t i cu la r ly  in te res t ing  cleavage of a non-aromatic heterocycle 

is t h a t  of methylenedioxy (or re la ted  keta l )  s t ructures ,  with loss  

53a of an oxygen from an aromatic ring. ?m example is cotarnine (28) . 
The mechanism i s  not e n t i r e l y  c lea r ,  bu t  may be something l i k e  t h a t  

5 3b shown, which agrees with observed subst i tuent  e f f e c t s  . 
Compounds of some of the types mentioned could be formed t o  

intermediates i n  reduction of aromatic s t ructures ,  as  discussed below. 

Aromatic Oxygen Heterocycles 

(i) Cleavages of furans Furan and 2-methylfuran a r e  

29 reducible only under forcing conditions using Li-MeNH2 . m e  

products a l l  r e s u l t  from ring-fission,  probably due i n i t i a l l y  t o  

27 conversion of (29) i n t o  (301, which i s  observable (e.s .r .  a t  4 ' ~ )  . 
This then undergoes ra t iona l  conversions i n t o  observed products. 

More s table  anions may survive without f i ss ion.  2-Furoic acid 

i n  NH3, with Li under a var ie ty  of conditions, and with o ther  metals 

Such a s  Na together with a proton source, does not  cleave, the  product 

being 2.5-dihydrofuroic acid.  However, Na o r  K i n  NH3 a t  e i t h e r  

31 -33' o r  -78O, form predominantly cleaved products . Whether 

cleavage occurs i n  a r ad ica l  anion of type (22) o r  a carbanion (27) i s  not 

certain.  We or ig inal ly  favoured (27)30 since evidence of i t s  

formation can be obtained by alkylation under the appropriate conditions. 

Dibenzofuran a lso  cleaves i n  THF, and rate-studies suggest the 

54 d i r e c t  process shown through (31) . The order of e f fec t s  of 

counter ion Li > Na > K > C s  accord with the assumption t h a t  the process 

is  ass i s t ed  by proximity e f fec t s ,  with the smaller ion (~i+) adjacent 

t o  oxygen i n  t h e  cleavage product contributing t o  the cleavage 

process. I f  t h i s  i s  general, it i s  a useful  point  t o  consider i f  

reductions other than cleavage (e.g. of the  benzene r ing i n  dibenzofuran) 
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is t o  be encouraged. The reported product from dibenzofuran with 

55 
N a  i n  1iq.NH~ r e s u l t s  from reduction of a benzene r i n g  . 

3-Furoic acid products a r e  a l s o  sens i t i ve  t o  condit ions,  and 

cleavage seems t o  depend on whether o r  not  a proton source i s  present .  

With Na and a range of proton sources the product i s  (32) o r  r a t i o n a l  

der iva t ives  of it5=, bu t  with L i  o r  Na i n  pure NH3 the product is  (33)  

presumably due t o  the  type of cleavage shown, followed by fu r the r  

57 reductions,  and conversions on work-up . However, no decision 

can be made t o  d i f f e r e n t i a t e  a r ad ica l  anion o r  a monoprotonated dianion 

a s  an intermediate. It i s  c l e a r  i n  t h i s  case a s  i n  o ther  s imi l a r  

ones, t h a t  whatever is the intermediate it must survive long enough 

t o  undergo cleavage, and t h a t  t he  presence of a proton source usual ly 

adds very rapid ly  protons t o  remove such ion ic  intermediates ,  of ten 

d i r ec t ing  the course of t he  process i n  a l t e r n a t i v e  d i rec t ions .  

This i s  very obvious with some benzofurans5* where the benzene 

r i n g  a c t s  a s  a charge-stabi l is ing s t ruc tu re .  For example, Li-NH3 



on (34) gives (35) whereas with 15% ethanol i n  the ammonia the  

rings-reduced product (36) i s  obtained i n  excel lent  yield. The radical  

anion may cleave (cf. 29 9 30), and there is  no ammonium ion present  

t o  complicate the i ssue ,  a s  there i s  w i t h  the acids above. 

(ii) Oxepines These non-aromatic e the r s  behave as  might be 

expected from addition of  electrons t o  the unsaturated system. 

*17-Dimethyloxepine(37) with K-NH3 a t  -70' produces a mixture of (38) 

59 
and (39) . The mechanism suggested by the authors seems val id ,  

the unsaturated system surviving a s  the enolate anion. The 

production of (38) may be due t o  remaining metal during the work-up 

59 
procedure. The benzoxepin (40) behaves similarly . In  .the 

mechanistically analogous case of 1-methoxycyclohexa-l,3-dienes, 

cleavage occurs i n  absence of ethanol, reduction of the  o le f in ic  

60 system i n  i ts  presence . The e f fec t s  of a proton source have not 

( 926 
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been examined here.  

(iii) Oxazoles and Isoxazoles and r e l a t e d  compounds. Since 

N-O bonds a r e  known t o  cleave w i t h  g r e a t  ease, it is not  surpr i s ing  

t h a t  t h i s  occurs w i t h  isoxazoles,  e.g. (41) even i n  presence of 

6 1  t-BuOH . That the expected product (42) was formed w a s  shown by 

the i so l a t ion  a f t e r  pyrolys is  of (43) i n  72% yie ld .  This o v e r a l l  

process has been used a s  p a r t  of a s t r u c t u r a l  r eve r sa l  of an 

61 
a,@-unsaturated ketone system and was devised fo r  this purpose . 
E. s. r. s tudies27 show t h a t  observable r ad ica l  anions from 

isoxazole have the  s t ruc tu re  (44). 

Oxazoles do no t  seem to have been examined. Benzoxazole is  

62 cleaved ; i n  the absence of a proton source the  s t a b l e  salt (45) 

is generated, and t h i s  can, f o r  example, be a lkyla ted  on carbon. 

In presence of ammonium bromide which causes protonation of (45),  fur ther  

reduction occurs t o  (46). 

In benzirnidazole, t he  ac id  NH r e s u l t s  i n  s a l t  formation63; 

reduction of the N-alkylated der iva t ives  does no t  seem t o  have been 

examined, b u t  would be expected t o  present  g rea t e r  d i f f i c u l t y  than the 

corresponding benzoxazole. 



( iv )  Epoxides and Aziridines. These i l l u s t r a t e  the  e f fec t s  of 

r ing-strain,  since e thers  are  not cleaved. Metal-ammonia solutions 

64a yie ld  alcohols from epoxides , although whether the  r a t e  determining 

step involves one o r  two electrons is not  known. That C-O bond is 

cleaved which would leave a negative charge on the s i tuat ion which 

can most ef fect ively  s t a b i l i s e  it, as shown below. 

Cleavage i n  some s teroidal  epoxides with Li-EtNH2 i s  s t e r i c a l l y  

directed,  yielding mostly a x i a l  alcohols 64b. 

64a 
Aziridines a re  a lso  reducible . 

some Sulphur Heterocycles 

The C-S bond i s  more l a b i l e  t o  cleavage than the corresponding 

C-0. E . s . r .  s tudies Suggest tha t  S delocalises an unpaired electron 

more readily than does 0, although d-orbital par t ic ipat ion seems 

24 
unlikely . Radical anions of undefined s t ructures  have been 

65 
postulated as intermediates i n  the cleavage of dialkyl sulphides . 

For unsymmetrical sulphides, competition between the two 

directions of cleavage is qual i ta t ively  observed66 t o  r e l a t e  t o  

formation of the most s table  intermediates. Choice between a l ternat ive  

t r ans i t ion  s t a t e s  o r  reductive cleavages of R-X-R' which may be writ ten 
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*- * - 
as R---X-R' o r  R-X---R' Seems to be defined by the a b i l i t y  of R or R' 

t o  s t a b i l i s e  the  negative charge, taking into account solvation factors 

a s  w e l l  a s  the s t ructures  of R and R ' .  The nature of X r e la tes  t o  

the ease of f i ss ion i n  the order S > 0 >> N, which i s  the same 

order of acidity a s  RXH. 
67 

(i) miophenes. Although reduction of thiophenes occurs i n  the 

absence of a proton source, formation of hydrogenation products requires 

the presence of such a source, only f iss ion products being formed 

i n  its absence. A range of products i s  resul t ing 

from dif ferent  procedures, including those which could have been 

produced by a l l y l i c  cleavage of (48) which with (47) is a major product 

in  presence of MeOH. In the  2-butene f ina l ly  produced the  double bond i s  

cis. 

Alkylthiophenes are  reported t o  give solely cleavage products 

e i the r  with N ~ - N H ~ ~ '  o r  with L ~ - N H ~ ~ ~ .  m e  general type (49, R=H o r  ~ e ;  

R1=Me o r  C02H) leads t o  the thioenolate type (501, converted in to  ketone 

(51) on work-up. These workers report  the production from thiophene 

i t s e l f  of butyraldehyde, which could a r i s e  by cleavage of (47), but 

more l ikely  from the thioenolate (50, n=O, R=R'=H) formed from 

cleavage of the i n i t i a l  radical  anion followed by further reduction. 



The direction of cleavage i n  unsymetrically substi tuted 

thiophenes i s  between S and the  l e a s t  alkylated (or the C02H 

substi tuted) carbon atom. Mechanistically t h i s  may be similar 

t o  the sulphide f i s s ion  above. The f iss ion of thiophene- 

2-carboxylic acids, b r i e f ly  investigated3', occurs between S 

and CC02H a s  expected. Under optimal conditions (5Li-NH3-MeOH 

a t  -33O) acids of type (52) (R=H o r  M e )  give (53) (R=H o r  Me) 

almost quanti tat ively.  The double bond geometry has not been 

investigated but is expected t o  be t h a t  shown. 

Electrochemical examination of thiophene-2-carboxylic acid 

suggests a rapid fragmentation of a rad ica l  anion3', s ince,  unlike 

benzoic acids,  electron addition is i r revers ib le  on the time-scale 

of cyclic voltammetry. 

Thionaphthenes are  reported69 t o  cleave with Na-NH3 under a l l  

conditions giving the thiphenol type (54). Early work6' on 

dibenzothiophenes indicated (55) a s  the product, but l a t e r  work 
72 

indicated cleavage t o  a thiophenol of type (56) (double bond posit ion 

undefined). A re-examination73 suggests t h a t  the mode of mixing may 

be c r i t i c a l ;  the  2,5-dihydro-derivative a r i s e s  i f  a solution of 

dibenzothiophene i n  ethanol and e ther  i s  added t o  sodium in ammonia, 

whereas thiophenol i s  produced i f  the metal i s  added l a s t .  Cleavage 

t o  (56) could proceed through (57) .  The r e s u l t  might be due t o  

dianion formation by excess metal, but  fur ther  systematic examination 

is needed. 

Some evidence i s  provided by e.s.r.  spectraz4 f o r  production of 

a rather s t ab le  dibenzothiophene radical  anion. 
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(ii) Thiazole i t s e l f  does not appear t o  have been examined, bu t  

4-methylthiazoles (58) with R=SH, OH or NH2 have been reacted with 

74 Na-NH3 . S a l t  formation with RVH inh ib i t s  reaction, but  with 

R=NH2 (58) is  p a r t i a l l y  converted i n t o  (60), probably through (61). 

Despite s a l t  formation, (58) (R=SH) i s  rapidly cleaved i n  the same 

posit ion t o  (59). 

Thiazole-4-carboxylic acid, and some derivatives, have been 

i n ~ e s t i g a t e d ~ ~  on a micro-scale, and the products of Na-NH3 reaction 

examined by hydrolysis. No se lec t iv i ty  of C-S f i s s ion  was 

discernible.  

Benzothiazole has long been known6' to  react  with Na-NH3, a process 

76 
recently repeated . The ring-opened products have not been thoroughly 

investigated, bu t  are  probably analogous to those from benzoxazole 

(45) and (46). 

Pa r t i a l ly  unsaturated r ing  systems such a s  (62)76 and (63)77 behave 

a s  expected from the general theory, through the s t ab i l i sed  anions, 

and there seems no need t o  discuss spec i f i c  cases. Similarly, 

1,3-dithianes7' a re  reducible as expected from work on simple thio- 

ethers. 



More complex heterocycles, such as purines, pteridines and 

pyrimidines have been l i t t l e  investigated, but  under appropriate 

conditions groups such a s  -CON: a re  reducible a s  fo r  amides (below) 

and the reduced products a re  cleaved by acids t o  expected fragments. 

This can sometimes be used fo r  s t ructure  determinations. 

Effects of Proton Sources 

Some general e f fec t s  of changed conditions have been noted, but  

it is worthwhile t o  note more systematically the  four most important 

+ 
ways i n  which added proton sources such a s  ROH o r  NHq can intervene. 

(i) For d i f f i c u l t  reductions, that  is when A? i s  formed only t o  

a minor extent  i n  the electron-addition equilibrium, hydrogenation occurs 

only when a proton source such a s  ROH i s  present. This induces 

an i r revers ib le  through-put t o  products by protonation of A* t o  *AH 

a process f o r  which ammonia i t s e l f  is  usually not  su f f i c ien t ly  acidic .  

Such reductions, when they occur, are  usually very rapid. 
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A d i f ferent ,  but  re la ted ,  aspect is t h a t  i f  A* i s  formed, 

but  is s l w l y  transformed by ring-fission o r  dimerisation, a competing 

hydrogenation process can be encouraged by adding a proton source. 

Pyridines, f o r  example, tend to hydrogenate ra ther  than t o  dimerise 

under these conditions. 

(ii) When the s t a r t i n g  material i s  acidic,  the addition of a 

18 su f f i c i en t ly  ac idic  buffer ,  such a s  MeOH f o r  indole reduction , 

prevents t o t a l  formation of s a l t ,  and therefore permits reduction 

of the neutra l  molecule. 

(iii) When an anionic product is formed by cleavage o r  

dimerisation,  the charge inh ib i t s  fur ther  electron-addition, and 

a p a r t i a l l y  reduced product may r e s u l t  on work-up. I f  fur ther  

reduction is desired, such anions require t o  be protonated i n  situ. 

One example among many is benzoxazole 6 2 .  

To obtain pa r t i a l ly  reduced products, it is often advisable 

t o  remove any excess metal before protonation during work-up. This 

can be done ca ta ly t i ca l ly  by adding a l i t t l e  f e r r i c  n i t r a t e ,  o r ,  

conveniently i f  the  product is not acidic,  by the addition of benzoio 

acid. Sodium n i t r i t e  is e f f i c i en t ,  providing the solution does not 

subsequently require t o  be ac idi f ied .  Some resu l t s  reported i n  the 

l i t e r a t u r e  may be due t o  fur ther  reduction during the work-up procedure. 

( iv )  Protonation of mesomeric anions under k inet ica l ly  controlled 

conditions often gives thermodynamically unstable isomers 79180. since 

these frequently contain i sola ted  C=C, the products are  usually s table  

t o  fur ther  reduction. However, reversible protonation, linked t o  the 

degree of buffering of the solution,  can lead t o  more s table  isomers, 

containing C-%-CZC, o r  C;N, o r  G O .  These can then undergo fur ther  

reduction i f  metal is  still present. 



There are  two possible desirable s i tuat ions  to obtain uniform 

products. Preservation of enolate anions can be achieved u n t i l  

work-up by omitting a proton source. Alternatively, with highly 

basic carbanions i n  par t icular ,  it may be desirable t o  buffer the  

+ 
solution with ROH o r  NHq to ensure tha t  once kinet ical ly  protonated 

the hydrocarbon 'acid '  cannot equil ibrate,  through re-formation 

of i t s  anion, with a more s tab le  isomer which is further reducible. 

The time involved i n  the  reaction may i n  some cases be c r i t i c a l ,  

s ince equil ibration through acid-base exchange is of ten slow 

compared t o  the i n i t i a l  reduction step. 

Even the proton source fo r  quenching an anion may be important. 

With bipheny181, Li-MI3 quenched w i t h  NHkC1 gives cleanly 

l,&dihydrobiphenyl, while alcohols k inet ical ly  yield some proportion 

+ 
of conjugated isomer leading t o  fur ther  reduction products. NHq 

shows l i t t l e  or no s t e r i c  hindrance e f fec t s  i n  protonation; on the  

other hand it reacts  much more rapidly than do alcohols with metal t o  

produce hydrogen gas, and thus t o  d iver t  reducing agent unless the  

substrate i s  very readily reducible. 

A s  usual, it is necessary t o  consider carefully each individual 

case i n  re la t ion to a given objective. Some examples may be quoted 

t o  indicate the  operations of some of these factors.  

Even the most powerful technique of Li-NH3-tert.BuOH, which is 

successful with benzene produces no reduction of some systems. 

These include pyrroles, even N-methylpyrrole, and simple furansZ9, which 

however might be fur ther  investigated. N-Phenylpyrrole i s  reduced 

82 solely i n  the benzene r ing  . 
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Indole requi res  the presence of MeOH(pKa 16) t o  maintain the  

presence of the r i n g  NH(pKa about 17)"; carbazole s imi l a r ly  needs 

EtOH. Only the benzene r ing  of indole reac ts .  

5-Methoxy-N-methylindole can be converted by Li-NH3-MeOH i n t o  

(64) (60%) and (65) (5%).  Without MeOH reaotion is much slower 

18 
and eventual ly g ives  (65) (70%) a s  t he  so l e  recognisable product . 
N-Methylindole behaves s imi lar ly ,  bu t  the r a t i o  of reduction i n  the  

two r ings  i s  more nearly equal; from t h e  benzene s e r i e s  it is known 

t h a t  OMe f a c i l i t a t e s  reduction of a r i n g  t o  which it i s  at tached.  

The dimerisation of pyridine with Li-NH3 has been noted. I n  

the presence of EtOH (2  equivalents)  and L i  ( 3  equivalents)  pyridine 

y ie lds  (66, R=H o r  a lkyl ) '  on work-up w i t h  NH4C1 o r  RX respect ively.  

The t h i r d  equivalent  of metal seems des i rable  t o  maintain the  

intermediate anion u n t i l  work-up. E a r l i e r  worka3 had deduced t h e  

formation of  such dihydro-derivatives from the  products of acid 

hydrolysis.  



Quinolines have been studied f a i r l y  systematically in  ammonia 

8,42 
under d i f fe ren t  conditions . The use of Li (2.5 equivalents) on 

quinoline and quenching with e i the r  W4C1 or RX r e s u l t s  in  

1.4-dihydro- o r  1-alkyl-1,4-dihydroquinoline i n  good yields. The 

r e s u l t  contrasts  with e a r l i e r  ones1* where MeOH was used in sihr 

o r  for  quenching, when a ra ther  undefined product resulted,  containing 

some 5,8-dihydroquinoline and fur ther  reduction products. The 

differences may be due t o  dianion formation i n  absence of MeOH, and 

protonation of a radical  anion in  i ts  presence. 

W i t h  Li-NH3 acridine yields a s t ab le  dianion as demonstrated by 

alkylation t o  (14) 41,42 . In the presence of ethanol 1,4,5,8-tetrahydro- 

acridine i s  formed bu t  with NH&OAc the 9,lO-dihydro product is 

41 
observed . An explanation fo r  t h i s  e f f e c t  has been advanced4' though 

the reasons a re  f a r  from c lea r .  

5-Ethyl-2-furoic acid yie lds  the  dimer (67) (50%) with Na ( 3  equivalents) 

84 
i n  NH3, followed by MeOH a f t e r  20 minutes . This contrasts  with clean 

formation of the 2,5-dihydrofuroic acids under conditions where NH4C1 

30 
is used a s  a rapid quench or with MeOH in ~ i h r  . The reason fo r  the  

contras t  i s  not c lear ;  possibly under the  f i r s t  conditions dianion may 

reac t  with s t a r t i n g  material, o r  more l ike ly  a slow dimerisation of 

radical  anion may occur. 

In absence of alcohol, benzofurans are  cleaved, a s  already noted, 

58 but i n  its presence the  benzene r ing  i s  hydrogenated . Protonation 

probably remves the radical  anion before it has a chance t o  undergo 

fission.  The reduction of amides13 provides a model f o r  the numerous 

biologically important heterocycles containing CONH. In the absence 

of any proton source, the  usual main reaction i s  s a l t  formation without 

reduction, although some reduction may occur through protons supplied by 

the CONH i t s e l f .  In presence of an alcohol such a s  ethanol, the  course 

( 936 ) 
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of reaction i s  

0 .' P o -  
RC: 4 RCH, 3 R C H X  3 RCH20H 

m2 q N H 2  

+ 
In the presence of the much more acidic MI, the aldehyde-ammonia 

is  protonated and remains u n t i l  work-up, giving the aldehyde instead 

of the alcohol. 

In recording reductions fo r  publication exact procedures should 

be noted. 

Uniquely available compounds 

Using the appropriate procedure, the methods are  characterised by 

a combination of great  power and great  specifici ty.  The otherwise 

mild conditions, par t icular ly  low temperatures, and easy and rapid 

work-up procedures, often by mere addition of water, also permit 

i sola t ions  of unstable products. 

The spec i f i c i ty  of reduction is usually quite d i f fe ren t  t o  other 

processes, which depend on hydride addition o r  ca ta ly t i c  addition 

of hydrogen atoms. In t h i s  case reducibi l i ty  is defined by 

electron-affinity,  so t h a t  C-C i n  i sola t ion i s  normally not reducible, 

i n  contrast  t o  c a t a l y t i c  hydrogenation. Par t i a l ly  hydrogenated 

systems may therefore be uniquely available. Some of the cleavage 

products, such a s  thioenols, are  not available by other routes. 

Anions generated can a lso  be used a s  intermediates i n  other processes. 

The method is potent ia l ly  useful in  cases where hydrogenation 

cata lys ts  a re  normally poisoned, such a s  sulphur derivatives and some 

amines. 



Many examples have been touched upon, and we note here several  

fur ther  cha rac te r i s t i c  examples. 

Phenanthridine may be regarded a s  e i t h e r  a benzoquinoline o r  

a benzoisoquinoline. Reductive methylation with Li-NH3 yields (68) 

42 corresponding t o  quinoline reduction . This contras ts  with (69) 

42 obtained from the quaternary metho-salt and lithium aluminium hydride . 
Reductive alkylation of 2-furoic ac id  yields (70, R=alkyl) . 

Oxidative decarboxylation then provides a synthesis  of 2-alkylfurans, 

85 including some natural  terpene derivatives . 

1,4-Dihydropyridines a r e  readi ly  available by reduction of 

pyridines. The products a r e  reactive enamines, which can be 

86 hydrolysed t o  1,5-dicarbonyl compounds, cyclisable t o  cyclohexenones . 
83 This type of process has been used i n  s teroid  t o t a l  synthesis . 

The p a r t i a l l y  unsaturated compounds ( 6 ~ ) ~ ~  o r  ( 6 3 1 ~ ~  on reduction 

give s ~ c i f i c  dianions which may be protonated o r  alkylated and fur ther  

reacted t o  give systems not readi ly  avai lable  by other methods. Thus 

readi ly  available heterocycles may be simply transformed i n t o  l e s s  

accessible products by t h i s  method. 

The r ing openings of ce r t a in  types of epoxides a r e  synthetically 

useful. Al ly l i c  epoxidesS7, cr-ketoepoxides88, &-unsaturated y6-epoxy 
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esters8' and others can be opened i n  a regiospecific manner, and 

sometimes stereospecific manner, often d i f fe r ing  from other methods. 

rfses have been made i n  including the preparation 

90 
of spec i f i c  ketone enolate anions . Unusual reactions include 

the production of a l l y l i c  alcoholsg1 readily ra t ional ised a s  

below. 
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