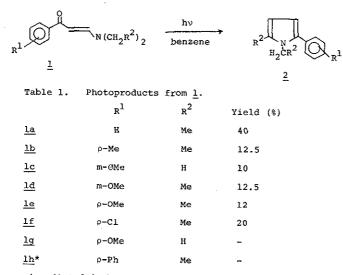
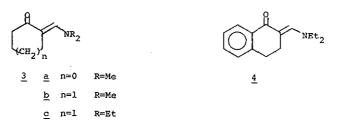
PHOTOCHEMICAL SYNTHESIS OF 2-PHENYLPYRROLES BY THE CYCLIZATION OF β-AMINOVINYL KETONES¹

Takehiko Nishio and Yoshimori Omote* Department of Chemistry, The University of Tsukuba, Sakura-mura, Ibaraki-ken, 300-31, Japan

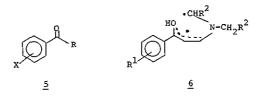

On irradiation, β -aminovinyl phenyl ketones (<u>1</u>) having such substituents as CH₃, OCH₃, and Cl on the phenyl ring cyclize to give pyrrole derivatives (<u>2</u>), except β -aminovinyl ρ -biphenyl ketone (<u>1h</u>). Also exocyclic β -aminovinyl ketone (<u>3</u> and <u>4</u>) are inert. The photochemical behavior of (<u>1</u>) is discussed in relation with that of aryl alkyl ketone.

In spite of the facts that the photochemical reactions of conjugated enones and dienones have extensively been investigated,² those of β -aminovinyl ketones have been little known.³ Recently, we reported that β -N,N-dialkylaminovinyl phenyl ketones gave pyrrole derivatives via δ -hydrogen abstraction by an excited carbonyl on irradiation.¹ We now wish to report the photochemical reactions of some β -aminovinyl phenyl ketones (<u>1</u>) having various substituents on the phenyl ring and related compounds, (3 and 4) in order to provide the scope and limitation of this reaction.


In a typical experimental, a solution of $(\underline{1b})^4$ (400 mg) in dry benzene (40 ml) was irradiated in a Pyrex tube through a high pressure mercury lamp under nitrogen for 30 hr at room temperature. After removal of the solvent, the residual oil was chromatographed on a silica gel column. Elution with benzene yielded the pyrrole $(\underline{2b})^5$ (50 mg, 12.5%) [v_{max}^{film} 3080, 1600, 1520, 820, and 750 cm⁻¹; $\delta(CDCl_3)$ 1.17 (t, 3H, $-CH_2CH_3$), 2.28 (s, 3H, $5-CH_3$ or $\rho-CH_3$), 2.38 (s, 3H, $\rho-CH_3$ or $5-CH_3$), 3.38 (q, 2H, $-CH_2CH_3$), 5.82 (d, 1H, J=2.5 Hz, H-3 or H-4), 5.96 (d, 1H, J=2.5 Hz, H-4 or H-3), and 7.13 (s, 4H, phenyl); m/e 199 (M⁺)]. Likewise, the other β -aminovinyl phenyl ketones (<u>1c-1f</u>) gave the corresponding cyclized products (<u>2c-2f</u>). However, <u>1g</u> and <u>1h</u> did not afford the pyrroles and were recovered almost quantitatively. Exocyclic

- 1 -

 β -aminovinyl ketones (3 and 4) also did not give the cyclized products.⁶ These results are summarized in Table 1



*<u>1h</u> was irradiated in benzene-methanol solution (3:2) because it was insoluble in benzene.

It is generally accepted that the Norrish type II reaction of aryl alkyl ketone ($\underline{5}$) proceeds via the excited carbonyl followed by a biradical intermediates upon γ -hydrogen abstraction.⁷ By analogy, the intermediacy of such a biradical ($\underline{6}$) can be assumed also in the above reaction.

- 2 -

The results from the photoreaction of β -aminovinyl phenyl ketones (1)^{1,8} as shown in Table 1 seem to be compatible with this assumption because the substituent R^1 must have a direct effect on the excited carbonyl of <u>1</u>.

It is well known that n, π^* triplet and π, π^* triplet states of aryl alkyl ketone lie close together and mix vibronically and that the relative energy levels of the two states are sensitive to the substituent X.⁷ All these ketones with π, π^* lowest triplets show substantially reduced reactivity in intramolecular hydrogen abstraction.

The inertness of <u>lh</u> in the photocyclization can be explained in terms of the similar reasons, while that of <u>lg</u> is not clear at present. The inertness of exocyclic β -aminovinyl ketones (<u>3</u> and <u>4</u>) is also explained by the differences of the excited states by analogy of those of the α , β -unsaturated ketones.⁹ These photochemical reaction may be useful for the synthesis of 2-phenylpyrrole derivatives.

References and Footnotes

- Part I of this series; H. Aoyama, T. Nishio, Y. Hirabayashi, T. Hasegawa,
 H. Noda, and N. Sugiyama, <u>J. Chem. Soc. (Pekin I)</u>, 1975, 298.
- A. A. Lamola and N. J. Turro, "Energy Transfer and Organic Photochemistry", Interscience, New York, 1969, p.232.
- C. Kashima, M. Yamamoto, Y. Sato, and N. Sugiyama, <u>Bull. Chem. Soc. Japan</u>, 1969, <u>42</u>, 3596.

K. Yamada, T. Konakahara, and H. Iida, ibid., 1973, 46, 2504.

- 4. G. Jammaer, H. Martens, and G. Hoornaert, Tetrahedron, 1975, 31, 2293.
- 5. No other products could be detected except stating material by tlc inspection.
- 6. The NMR spectrum of the photolysate of $\underline{3c}$ in C_6D_6 (cyclohexane as internal standard) showed cis-trans isomerization on C=C double bond. Upon prolonged irradiation, polymerization of the products took place.

- 3 --

- P. J. Wagner, <u>Accounts Chem. Res.</u>, 1971, 4, 168.
 A. Padwa, W. Eisenhardt, R. Gruber, and D. Pashyan, <u>J. Amer. Chem. Soc.</u>, 1971, 93, 6998.
- 8. The Mechanism for the formation of pyrrole $(\underline{2a})$ from $\underline{1a}$ was explained in reference 1.
- 9. N. C. Yang and J. Jorgenson, <u>Tetrahedron letters</u>, 1964, 1203.

Received, 6th October, 1976