A NOVEL AND SIMPLE SYNTHESIS OF 1,3-BENZOXAZIN-4-ONE DERIVATIVES

Tetusji Kametani, * Terumi Higa, Chu Van Loc, Masataka Ihara, and Kejichiro Fukumoto

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Treatment of salicyl chloride (§) with 3,4-dihydro- β -carboline (ζ) gave indolo[$2^1,3^1:3,4$]pyrido[2,1-b][1,3]-benzoxazin-4-one (\S), which was also obtained by a reaction of § with N-formyltryptamine (\S). The same reaction of § with 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline (\S) and isoquinoline (\S) afforded the corresponding pyridobenzoxazinones (\S 2) and (\S 4), respectively.

Previously we have developed a new and one-step synthesis of quinazolones (4) by a cycloaddition reaction of the iminoketene \mathfrak{F} , generated in situ from anthranilic acid \mathfrak{F} via the sulfinamide anhydride \mathfrak{F} , to imines $\mathfrak{F}^{1,2}$ and amides \mathfrak{F}^{3} . In a continuation of this work, we examined a reactivity of salicylic acid (\mathfrak{F}), instead of antharanilic aicd (\mathfrak{F}), on the basis of our finding \mathfrak{F}^{1-3} , and now we wish to report a novel and simple synthetic method for 1,3-benzoxazin-4-one system by the reaction with imines or amide.

Heating salicylic acid (5) with an excess of thionyl chloride in dry benzene in a current of nitrogen for 4 hr gave salicyl chloride (6) 4, whose treatment with an equimolar amount of 3,4-dihydro- β -carboline (7) in dry benzene at room temperature for 2 hr, followed by silica gel column chromatography using benzene as eluant, afforded the condensation product, $C_{18}H_{14}N_{2}O_{2}$ [microanalysis and mass spectrometry, m/e 290 (M⁺)], mp 234 \sim 235 (from ethyl acetate-hexane), as colourless crystals in 81.4 % yield. The ir [ν_{max} (CHCl₃) 3500 (NH) and 1660 cm⁻¹ (CON<)] and nmr [δ (CDCl₃) 2.8 \sim 3.6 (4H, m, CH₂CH₂), 6.4 (1H, s, ArCH< $_{O-}^{N=}$) and 7.2 \sim 8.1 (8H, m, ArH) indicated this compound to be indolo-[$_{1}^{2}$, $_{2}^{1}$, $_{3}^{1}$:3,4]pyrido[2,1-b][1,3]benzoxazin-4-one (9). Treatment of salicyl

chloride (5) with 1.2 molar equivalent of N-formyltryptamine (8) in dry benzene and chloroform under the same conditions as above gave, in 73.6 % yield, the indolopyridobenzoxazepine (9) which was identical with the authentic sample, prepared from χ , in spectral and mp comparisons. These reaction would proceed as shown in Chart 2.

Chart 2

However, the following mechanism would not be ruled out; salicyl chloride (§) might be firstly converted into the more reactive oxoketene (10)^{4,5} by an intramolecular elimination of hydrogen chloride and then the oxoketene (10) would react with 3,4-dihydro- β -carboline (7) or N-formyltryptamine (8) in a manner due to an intermolecular cycloaddition as indicated in Chart 3.

Chart 3

3,4-Dihydro-6,7-dimethoxy-1-methylisoquinoline (LL) reacted with salicyl chloride (§) in dry benzene at room temperature for 16 hr to form the corresponding 1,3-benzoxazin-4-one (LZ), mp 153 $^{\circ}$ 155 (from ethyl acetate-hexane) [$\nu_{\rm max}$ (CHCl $_3$) 1650 cm $^{-1}$ (CON<); δ (CDCl $_3$)

1.85 (3H, s, CH₃), 2.5 $^{\circ}$ 3.2 (4H, m, CH₂CH₂), 3.8 and 3.9 (each 3H, s, OCH₃) and 6.9 $^{\circ}$ 8.6 (6H, m, ArH)] in 65 % yield. Similarly, the reaction of isoquinoline (13) with 6 in dry benzene under the same conditions afforded, in 75 % yield, the isoquinolobenzoxazinone (14), mp 130 $^{\circ}$ 132 $^{\circ}$ (from ethyl acetate) [$^{\vee}$ _{max} (CHCl₃) 1675 cm⁻¹ (CON<); 6 (CDCl₃) 5.75 (1H, d, J 8 Hz, ArCH=CHN), 6.7 (1H, s, ArCH< $^{N=}$), 6.95 $^{\circ}$ 7.6 (8H, m, ArH) and 7.95 (1H, d, J 8 Hz, ArCH=CHN).

Chart 4

We have developed a novel and simple synthetic procedure for 1,3-benzoxazin-4-one system, and a further extension⁵ of this reaction using thiosalicylic acid, o-aminobenzyl alcohol and so on is now in progress.

References

- 1. T. Kametani, T. Higa, K. Fukumoto, and M. Koizumi, <u>Heterocycles</u>, 1976, 4, 23.
- 2. T. Kametani, T. Higa, C. V. Loc, M. Ihara, M. Koizumi, and K. Fukumoto, J. Amer. Chem. Soc., 1976, 98, 6186.
- 3. T. Kametani, C. V. Loc, T. Higa, M. Koizumi, M. Ihara, and K. Fukumoto, <u>Heterocycles</u>, 1976, 4, 1487; <u>J. Amer. Chem. Soc.</u>, in press.
- 4. E. Ziegler and H. D. Hanus, Monatsh., 1964, 95, 1053.
- 5. M. von Strandtmann, M. P. Cohen, and J. Shavel, Jr., J. Heterocyclic Chem., 1969, 6, 429.

Received, 29th November, 1976