SYNTHESIS OF OUDENONE AND ITS RELATED COMPOUNDS

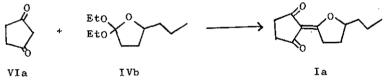
Teruaki Tsujikawa*, Yasushi Nakagawa and Kazuo Tsukamura Central Research Division, Takeda Chemical Industries, Ltd.,

Jusohonmachi, Yodogawa-ku, Osaka, Japan

K<u>atsutada</u> Masuda

Faculty of Pharmaceutical Sciences, University of Toyama, Gofuku, Toyama, Japan

Oudenone, a tyrosine hydroxylase inhibitor, was obtained by heating 1,3-cyclopentanedione with 2,2-diethoxy-5-propyltetrahydrofuran. A similar one-step synthesis afforded several related analogues.


Umezawa, et al.¹ discovered oudenone (Ia) in the culture filtrate of a strain related to <u>Oudemansiella radicata</u>. As Ia showed inhibition of tyrosine hydroxylase and an antihypertensive activity in spontaneously hypertensive rats,^{1,2} it was expected that the chemical modification of Ia might provide an effective agent for the treatment of the hypertension.

This communication describes useful one-step synthesis of these compounds. In the present synthesis of Ia and its analogues, formation of carbon-carbon double bonds between 1,3-diketones and heterocycles was achieved by the condensation of 1,3-diketones with heterocyclic

-261-

orthoester derivatives or cyclic iminoethers. This reaction is particularly useful for the synthesis of Ia and its analogues containing nitrogen or sulfur in place of oxygen of the tetrahydrofuran ring. A typical example is shown below.

A mixture of 2,2-diethoxy-5-propyltetrahydrofuran (IVb) (12.5 g) and 1,3-cyclopentanedione (VIa)³ (3.0 g) was heated in an oil bath at 95-100° for 6 hr and the low boiling fraction was distilled off. The resulting residue was purified by column chromatography to give Ia as colorless plates (mp 82-83°, 7.8%), the structure of which was established by comparison of its IR and NMR spectra (CDCl₃) with those of an authentic sample obtained by the method of Ohno, et al.⁴ In this reaction, the addition of acetic anhydride and anhydrous zinc chloride, which are usually employed in the condensation of orthoesters with active methylene compounds,⁵ did not affect the reaction time and the yield.

The reaction of 2,2-diethoxytetrahydrofuran $(IVa)^6$ with dimedone (VIc) gave 5,5-dimethyl-2-(4,5-dihydro-2(3H)-furylidene)-1,3-cyclohexanedione (Ib) in a yield of 5% and 3-ethoxy-5,5-dimethyl-2-cyclohexen-1-one in 50% yield. Similar condensations were carried out using cyclic iminothioethers. Thus, heating of 2-methylthio-1-pyrroline $(Vb)^7$ with VIc and acetylacetone (VIe) at 95° easily afforded 5,5-dimethyl-2-(2-pyrrolidinylidene)-1,3-cyclohexanedione (Ih) and 3-(2-pyrrolidinylidene)-2,4-pentanedione (Ii), respectively. These compounds showed good

-262-

identity with authentic samples prepared from 2-ethoxy-1-pyrroline (Va).⁸ Other compounds in Table I were prepared by similar procedures.

•						-				- ,			
	• • R ₁	R2		R ₃	x			.0					
Ia	((CH ₂) ₂	C	3 ^H 7	0	F	- r	⋞	× \	R_2			
b	сн ₂ с(сн ₃) ₂ сн ₂		ŀ	I	0	F	² 2-	~	\	. ,	С ₂ н		X R3
с	(CH ₂) ₂		ł	ľ	S			•0			С ₂ н	50~\	´
đ	(CH ₂) ₃		ŀ	l	s			1	1			נ	v
e	сн ₂ с(сн ₃) ₂ сн ₂		F	I	S								
f	сн ₂ с	Ĥ	Í	NCH3									
g	(H	[NH									
h	сн ₂ с(сн ₃) ₂ сн ₂		H	I	NH	F	۲	J ^o			~		νN. Έ
i	сн ₃ сн ₃		Н	I	NH	$x_1 \rightarrow x_1 \rightarrow x_3$				- ^R 3	R4Y N R3		
j	сн3	с ₂ н ₅	H	E	NH	F	² -	Κl	\checkmark			($(H_2)_n^{\prime}$
k	сн3	ос ₂ н	5 E	ſ	NH								
1	\square		H	I	NH				I				V
m	((CH ₂) ₂	c	3 ^H 7	NH								
n	(CH ₂) ₃		C	3 ^H 7	NH			, ,0				R	lP
0	сн ₂ с(сн ₃) ₂ сн ₂		C	3 ^H 7	NH	F	¹	<	< x ~	-R3		<u>т</u> .	\
IIa ·			Н	[NH	R	د	\square				R	[
ъ	(CH ₂) ₃		H		NH		~	'b				2 1	No.
с	сн ₂ с(сн ₃) ₂ сн ₂		H	[NH			II	Υ			VI	
IIIa	(CH ₂) ₂		H	ſ	NH			11			¥ I		
b	сн ₂ с(сн ₃) ₂ сн ₂		Н	[NH								
	R ₃	x		R ₃	R4	Y	n			R ₁		^R 2	
IVa	Н	0	٧a	н	с _{2^н5}	0	2		VIa		(CH ₂)	2	
b	с ₃ н7	о	b	н	снз	s	2		b		(CH ₂)		
с	Н	S	с	с ₃ н.		0	2		с	сн2	с(сн3)	-	
đ	н	NCH3	d	н	с ₂ н ₅	0	3		d		\mathbf{H}		
		~	e	н	с ₂ н ₅	0	4				Ľ	>	
					-				е	снз		^{сн} 3	
									f	снз		с _{2^н5}	

-263-

g CH3

ос₂н₅

Starting materials		Rea	ection cond Temp.	litions Time	Product ^{a)}	Yield	Mp (°C)	
A	В	Solvent	(°C)	(hr)		(%)		
IVb	VIa	_	95-100	6	Ia	7.8	82-83	
IVa	VIc	PrOH	reflux	2	IP _p)	5	123-125	
IVc	VIa	EtOH	150-160	5	Ic	32.3	167-168	
IVc	VIb	EtOH	160	5	Id	11.5	163-164	
IVc	VIC	EtOH	reflux	6.5	Ie	73	146-148	
IVd	VIc		100	1	If	14	153-155	
Va	VIa	EtOH	reflux	1	Ig	43	207-208	
Va	VIc	EtOH	reflux	1	Ih	61	180-181	
Va	VIe	_	100-110	4.5	Ii	13	96-97	
Va	VIf	_	110-120	3.5	Ij ^{c)}	18	oil ^{d)}	
Va	VIg	_	110-120	4	Ik ^e)	16.5	98-100	
Va	VId	EtOH	reflux	5	I 1	20.5	242-243	
٧b	VIe		95	5(min)	Ih	67.7	180-182	
Vb	Vle	_	95	4.5	Ii	8.2	92-94	
٧c	Vľa	EtOH	reflux	2	Im	76	150-154	
٧c	VIb	EtOH	100	6	In	13.8	92-94	
Vc	VIc	EtOH	reflux	4	Io	48	125-126	
٧d	VIa	EtOH	reflux	2	IIa	50	145-147	
Vđ	VIb	EtOH	140-150	2	IIb	9	103-104	
٧d	VIc		110-120	2	IIc	44.2	163-164	
Ve	VIa		120-130	2	IIIa	39.3	164-165	
Ve	VIc		120-130	2	IIIb	33.6	142-143	

Table I. Synthesis of Oudenone (Ia) and Related Compounds

a) All compounds gave satisfactory elemental analyses.

b)
$$\sqrt{\sum_{0Et}^{0}}$$
, bp 95-96° (2 mmHg), 50%

c) Another possible structure ($R_1 = Et$, $R_2 = Me$) remains to be established at present.

- d) Purified by a silica gel column (Merck No. 60) using benzene: acetone (9:1) as eluent.
- e) Another possible structure ($R_1 = OEt$, $R_2 = Me$) remains to be established at present.

HETEROCYCLES. Vol. 6, No. 3. 1977

The starting materials for the above-mentioned reactions: $IVa, {}^{6}$ 2,2-diethoxytetrahydrothiophene (IVc), {}^{6} 2,2-diethoxy-1-methylpyrrolidine (IVd), {}^{6} Va, 8 , Vb, 7 Vc, 9 2-ethoxy-3,4,5,6-tetrahydropyridine (Vd), {}^{10} 7-methoxy-3,4,5,6-tetrahydro-2H-azepine (Ve); {}^{11} VIa, 3 and 2,4hexanedione (VIf), {}^{12} were all obtained by the methods described in literatures. According to the procedure of Meerwein, et al., {}^{6} IVb was accessible from γ -propylbutyrolactone (VII) and obtained as colorless oi1 [bp 78-86° (18-20 mmHg), 24.5%], and 2-ethoxy-5-propyl-1-pyrroline (Vc) was also prepared as colorless oi1 [bp 55-56° (0.5 mmHg), 97%] by a similar procedure.

ACKNOWLEDGEMENT The authors are grateful to Dr. S. Tatsuoka, Dr. E. Ohmura, Dr. T. Masuda and Dr. S. Yurugi for encouragement throughout this work.

REFERENCES

- H. Umezawa, T. Takeuchi, H. Iinuma, K. Suzuki, M. Ito, M. Matsuzaki,
 T. Nagatsu and O. Tanabe, <u>J. Antibiotics</u>, 1970, 23, 514.
- I. Nagatsu, T. Nagatsu, K. Mizutani, H. Umezawa, M. Matsuzaki and
 T. Takeuchi, <u>Nature</u>, 1971, 230, 381.
- 3 F. Merenyl and M. Nilsson, Acta Chem. Scand., 1964, 18, 1368.
- 4 M. Ohno, M. Okamoto, K. Kawabe, H. Umezawa, T. Takeuchi, H. Iinuma and S. Takahashi, <u>J. Amer. Chem. Soc</u>., 1971, 93, 1285.
- 5 R. H. DeWolfe, "Carboxylic Ortho Acid Derivatives", Academic Press, New York, 1970, pp 232.

-265-

- 6 H. Meerwein, P. Borner, O. Fuchs, H. J. Sasse, H. Schrot and J. Spille, <u>Chem. Ber</u>., 1956, 89, 2060.
- 7 J. Tafel and P. Lawaczecki, <u>Ber</u>., 1907, <u>40</u>, 2840.
- 8 A. Pilotti, A. Penterhall, K. Torssell and C. G. Lindblad, <u>Acta</u> <u>Chem. Scand</u>., 1969, 23, 818.
- 9 A. A. Ponomarer and V. A. Sedavkino, <u>Khim. Geterotsikl. Soedin.</u>, 1969, 809 [Chem. Abs., 1970, 72, 100402].
- 10 T. Oishi, M. Nagai, T. Onuma, H. Moriyama, K. Tsutae, M. Ochiai and Y. Ban, <u>Chem. Pharm. Bull</u>., 1969, 17, 2306.
- 11 R. E. Benson and T. L. Cairns, "Organic Syntheses", Coll. Vol. IV, ed. by N. Rabjohn, John Wiley and Sons, Inc., New York, 1963, pp 588.
- 12 G. T. Morgan and H. G. Reeves, <u>J. Chem. Soc.</u>, 1923, 123, 447. Received, 2nd December, 1976