SYNTHESIS OF VINCA ALKALOIDS AND RELATED COMPOUNDS. III. 1
STEREOSELECTIVE SYNTHESIS OF ISOVINCINE.

György Kalaus, Lajos Szabó, Judith Horváth and Csaba Szántay^X
Institute of Organic Chemistry, Technical University

1111 Budapest, Gellért tér 4. Hungary and Central Reseach Institute for Chemistry, Hungarian Academy of Sciences

When enamine $\underline{2}\underline{a}$ was reacted with methyl α -acetoxy-acrylate, and the adduct obtained was reduced, $\underline{8}\underline{a}$ was formed stereoselectively. Deacetylation of $\underline{8}\underline{a}$ and subsequent oxidation furnished isovincine (lc).

Previously we have published our stereoselective and asymmetric synthesis of vincamine 1.

Vinca minor contains, in addition to vincamine (la), its methoxy-containing analogue vincine (lb) along with other alkaloids.

Vincine possesses interesting pharmacological properties³.

For investigation of the relationship of biological effect to structure an isomer of vincine has been synthesised, in which the methoxy-group occupies position 10 instead of 11 (1c), thus showing closer similarity to the biologically extremely active serotonin.

As the starting material 5-methoxytryptamine was used, prepared according our previously described method⁴.

The key intermediate 2 was prepared from 5-methoxytryptamine and the lactone 2^{-1} , in two different ways.

In the first approach $\underline{3}$ was treated with boiling hydrobromic acid (48 %, 4-5 hrs.), and the resulting acid was esterfied (methanol/H₂SO₄) to give $\underline{4}^5$ in 66 % yield. After boiling $\underline{4}$ with 5-methoxy-tryptamine in xylene (64 hrs.) the lactam $\underline{5}$ was obtained in 47 % yield [m.p. 119-121°; ir $\sqrt{\frac{\text{KBr}}{\text{max}}}$ cm⁻¹: 1610, 3200; nmr (2 in CDCl₃): 1,60 (1H, s, ind-NH), 2,58-3,25 (3H, m, aromatic protons), 6,15 (3H, s, -OCH₃), 9,05 (3H, t, -CH₂-CH₃)].

The lactam $\underline{5}$ was treated with boiling POCl₃ (5 hrs.) and excess reagent was distilled. After working up the residue, the perchlorate $\underline{2b}$ was isolated in 64 % yield (m.p. 216-217°; $ir\sqrt[3]{kBr}$ cm⁻¹ 1620, 3350).

A second route proved to be easier. A solution of the lactone $\frac{3}{2}$ and 5-methoxytryptamine in chlorobenzene was boiled for 8 hrs. After removal of the solvent and the unreacted amine, the crude amide $\frac{6}{2}$ was treated with POCl₃ as above, yielding $\frac{2}{2}$ (31 %).

The liberated base 2a was reacted with methyl α -acetoxyacrylate in CH_2Cl_2 in the presence of a small amount of tert.-butanol as proton source (48 hrs.) and the product was isolated in the form of its perchlorate ((30 %, m.p. 180-181°; ir $\sqrt[3]{MBr}$ cm⁻¹: 1625, 1750, 1770, 3300).

Catalytic reduction of the salt $\underline{7}$ a (Pd/C, methanol) proceeded with high stereoselectivity. According to our earlier experiments with the closely related compound $\underline{7}\underline{b}$ the ester $\underline{8}\underline{c}$ having cis C/D ring junction is formed as the major product, so it is reasonable to presume that the structure $\underline{8}\underline{a}$ is correct also in this case. The acetoxy-group was hydrolyzed easily during the workup, so it was convenient to analyze the beautifully crystalline hydroxy-ester $\underline{8}\underline{b}$. Complete deacetylation was achieved by the use of methanolic sodium

Н

c

COCH₃

<u>7</u>

methoxide (30 min.) [8b, m.p. 206-207°, in 47% yield from methanol; $ir\sqrt[3]{}_{max}^{KBr}$ cm⁻¹: 1740, 3250; nmr (CDCl₃): 2,05 (1H, s, -OH), 2,30 (1H, s, ind-NH), 2,60-3,35 (3H, m, aromatic protons), 6,15 (3H, s, -OCH₃), 6,36 (3H, s, -COOCH₃), 6,62 (1H, s, 12bH); mass m/e 386 (M⁺), 371 (M⁺-15), 327 (M⁺-59), 325 (M⁺-61), 297 (M⁺-89)].

During the oxidation of $\underline{8}\underline{b}$ with Fétizon-reagent ($\underline{A}\underline{g}_2CO_3$ precipitated on celite) the same phenomenon was observed as in the vincamine synthesis¹.

Reaction of $\underline{8b}$ (0.7 g) with Fétizon-reagent (3,50 g) in boiling benzene was monitored by TLC ($\underline{Al_2O_3}$ $\underline{PF_{254}}$, $\underline{Ch_2Cl_2}$ -methanol 10:0,1). After 44 hr the mixture was worked up and the components separated by preparative TLC ($\underline{Al_2O_3}$ $\underline{PF_{254}}$, $\underline{Ch_2Cl_2}$ -methanol 10:0,1, elution with hot $\underline{Ch_2Cl_2}$).

The thermodynamically less stable 14-epi-isovincine [$\frac{1}{12}$, m.p. $171-172^{\circ}$ from benzene; $ir\sqrt{\frac{KBr}{max}}$ cm⁻¹: 1745; nmr (CDCl₃): 2,52-3,32 (3H, m, aromatic protons), 6,16 (3H, s, -OCH₃), 6,28 (3H, s, -COOCH₃), 9,16 (3H, t, -CH₂-CH₃)] was obtained in 46 % yield and the more stable isovincine [$\frac{1}{12}$, m.p. $164-165^{\circ}$ from methanol; $ir\sqrt{\frac{KBr}{max}}$ cm⁻¹: 1742; nmr (CDCl₃): 2,60-3,16 (3H, m, aromatic protons), 5,35 (1H, s, -OH), 5,75 (1H, s, 3 α H), 6,15 (3H, s, -OCH₃), 6,17 (3H, s, -COOCH₃), 6,52 (2H, s, C-15-CH₂-); mass m/e 384 (M⁺), 383 (M⁺-1), 369 (M⁺-15), 355 (M⁺-29), 337 (M⁺-47), 325 (M⁺-59), 314 (M⁺-70), 297 (M⁺-87), 282 (M⁺-102)] in 18 % yield.

Epimerization of $\underline{\underline{l}}\underline{\underline{d}}$ to $\underline{\underline{l}}\underline{\underline{c}}$ was brought about by methanolic NaOMe. The relation between $\underline{\underline{l}}\underline{\underline{d}}$ and $\underline{\underline{l}}\underline{\underline{c}}$ was also proved by dehydration of each with acetic anhydride to give the same compound, l1-methoxy-apovincamine $[\underline{9}, \text{ m.p. } 163\text{--}164^{\circ}, \text{ in } 63\% \text{ yield from methanol;}$ $ir\sqrt[3]{\text{KBr}}$ cm⁻¹: 1740, 1730; nmr (CDCl₃): 2,60-3,15 (3H, m, aromatic protons), 3,82 (1H, s,>C=CH-), 5,85 (1H, s, 3 α H), 6,02 (3H, s,=OCH₃), 6,11 (3H, s, -COOCH₃)].

The catalysis of the $\underline{\underline{l}}\underline{\underline{d}} \Rightarrow \underline{\underline{l}}\underline{\underline{c}}$ epimerisation was also achieved by silver ions.

Using boiling xylene instead of benzene in the oxidation of <u>No</u> by Fétizon-reagent, <u>ld</u> was gradually converted to <u>lc</u> as a major component of the mixture and iso-vincine was isolated (after 5 hr) in 50 % yield.

The financial help of the Richter Gedeon Pharmaceutical Company is gratefully acknowledged.

References.

- For Part I, see, as a preliminary communication,
 Cs. Szántay, L. Szabó and Gy. Kalaus: Tetr. Letters 1973, 191;
 as Part II a full paper with asymmetric synthesis is in press.
- 2.) Z. Čekan, J. Trojanek, O. Štrouf, and K. Kaoková: Pharm. Acta Helv. 35, 96 (1960), O. Štrouf and J. Trojanek: Coll. Czech. Chem. Comm. 29, 447 (1964)
- 3.) W. Neczypor: Pharmazie 20, 735 (1965)
- 4.) Cs. Szántay, L. Szabó, and Gy. Kalaus: Synthesis 1974, 354
- 5.) E. Wenkert and B. Wickberg: J. Amer. Chem. Soc. <u>87</u>, 1580 (1965)

Received, 20th January, 1977