2-SUBSTITUTED ACENAPHTHO[1,2-d]OXAZOLES

Otohiko Tsuge* and Masahiro Koga Research Institute of Industrial Science, Kyushu University 86, Hakozaki, Higashi-ku, Fukuoka 812, Japan

Irradiation of 2-diazoacenaphthenone (1) in nitriles such as acetonitrile, propionitrile, benzonitrile, p-tolunitrile, and acrylonitrile afforded the corresponding 2-substituted acenaphtho-[1,2-d]oxazoles (3). In pyrolysis of 1 in benzonitrile 2-phenyl-oxazole derivative 3c was formed, together with traces of 2,2'-diacenaphthylidene-1,1'-dione.

Huisgen and his co-workers² first reported the 1,3-dipolar cycloaddition reaction of benzonitrile with the ketocarbene generated from uncatalyzed and copper-catalyzed pyrolysis of diazoacetophenone. Ketocarbenes not undergoing Wolff rearrangement are suitable for 1,3-dipolar cycloaddition. It has been reported that decomposition of 4,7-dimethyl-2-diazo-1-indanone in benzonitrile in the absence and presence of copper catalyst afforded the corresponding oxazole derivative in 11 and 34% yields respectively.³

2-Diazoacenaphthenone $(1)^4$ is one of few diazo ketones where Wolff rearrangement could not be achieved.⁵ Thus it is expected that the ketocarbene 2 generated from 1 would behave as a 1,3-dipole. Our attention was focused on the investigation on the 1,3-dipolar cycloaddition of 2 to nitriles, which is

the subject of the present communication.

A solution of $\frac{1}{1}$ (0.78 g, 4 mmol) in acetonitrile (200 ml) was irradiated by Pyrex-filtered light from a 100W high-pressure mercury lamp at room temperature for 12 hr. The nitrile was evaporated in vacuo, and the residue was chromatographed on alumina using benzene as an eluent to give 0.29 g (35%) of 2-methylacenaphtho[1,2-d]oxazole ($\frac{3a}{2}$).

Similarly, photolysis of 1 in propionitrile, benzonitrile, and p-tolunitrile gave the corresponding oxazole derivatives, 3b-3d. Previously, we reported that the reaction of 1 with acrylonitrile in boiling benzene afforded a mixture of two stereoisomeric 2'-cyanospiro[acenaphthenone-2,1'-cyclopropanes]. In the irradiation of 1 with acrylonitrile, however, the corresponding oxazole derivative 3e was formed.

3.	R	Yield %	Мр., ^о С	Appearance	Nmr(CDC1 ₃) გ	M ⁺ (m/e)
a ~∕	Me	35	115-116	yellow prisms	2.64(3H, s), 7.3-7.9 (6H, m)	207
₽	Et	40	68-69	yellow prisms	1.4(3H, t, J=7.5 Hz), 2.59 (2H, q, J=7.5 Hz), 7.2-7.9	221
ç	Ph	24	217-218	orange needles	(6H, m)	269
₫	p-toly1	14	218-220	orange prisms	3.5(2H, dd, =CH ₂ , J=7.5,	283
e *	CH=CH ₂	11	135-136	orange prisms	9 Hz), 5.85(1H, dd, =CH, J=7.5, 9 Hz), 7.2-7.9	219

The yields, physical and spectral data of $\mathfrak Z$ are shown in Table I. Struc-Table I

Satisfactory elemental analyses have been obtained for all $\mathfrak Z$. Ir spectra of all $\mathfrak Z$ showed no bands ascribable to NH, C \equiv N, and C \equiv O absorptions.

tural elucidation of \mathfrak{Z} was accomplished on the basis of spectral data (Table I) and of chemical conversion.

Hydrogenolysis of 3a and 3b over PtO₂ in dioxane at room temperature gave the corresponding 1-acylaminoacenaphthenes, 4a and 4b, in excellent yields respectively.

 $4a: yield 85\%; colorless needles, mp <math>204-205^{\circ}C$ (lit. mp $205^{\circ}C$); ir (KBr) 3300 (NH), 1643 cm⁻¹ (C=0); nmr (CDCl₃) & 1.98 (3H, s, CH₃), 3.05, 3.75 (each lH, m, CH₂), 6.0 (2H, m, CH and NH), 7.2-7.9 (6H, m, ArH); mass spectrum m/e 211 (M⁺).

4b: yield 85%; colorless needles, mp 198-199°C; ir (KBr) 3300 (NH), 1643 cm⁻¹ (C=0); nmr (CDC1₃) δ 1.15 (3H, t, CH₃, J=7.2 Hz), 2.25 (2H, q, CH₂Me, J=7.2 Hz), 3.1, 3.8 (each 1H, m, CH₂), 6.0 (2H, br, CH and NH), 7.2-7.9 (6H, m, ArH); mass spectrum m/e 225 (M⁺).

No thermal decomposition of $\ensuremath{\mathfrak{J}}$ occurred in boiling benzene or toluene for a

long while.⁶ When a solution of 1 in benzonitrile was heated at 150°C for 2.5 hr, oxazole derivative 3c was obtained in 8% yield, together with traces of 2,2'-diacenaphthylidene-1,1'-dione and recovery of 1 (53%).

Thus, it is clear that 2 generated from 1 by photolysis and thermolysis behaves as a 1,3-dipole toward nitriles.

REFERENCES

- Studies of Acenaphthene Derivatives. XXX. Part XXIX of this series: 0.
 Tsuge and M. Koga, Org. Prep. & Proced. Int., 1975, 7, 173.
- 2. W. Ried and H. Lohwasser, <u>Liebigs Ann. Chem.</u>, 1965, <u>683</u>, 118.
- 3. R. Huisgen, G. Binsch, H. König, and H. J. Sturm, Angew. Chem., 1961, 73, 368.
- 4. R. Huisgen, <u>ibid</u>., 1963, <u>75</u>, 604.
- M. P. Cava, R. L. Litle, and D. R. Napier, <u>J. Amer. Chem. Soc.</u>, 1958, <u>80</u>, 2257.
- 6. O. Tsuge, I. Shinkai, and M. Koga, <u>J. Org. Chem.</u>, 1971, 36, 745.
- H. Lettre and M. Stratmann, <u>Hoppe-Seyler's Z. physiol. Chem.</u>, 1951, <u>288</u>, 25;
 <u>Chem. Abstr.</u>, 1955, <u>49</u>, 3106.

Received, 19th January, 1977