A FACILE SYNTHESIS OF 1-(2-TETRAHYDROFURYL)-5-FLUOROURACIL (FTORAFUR)

Tetsuji Kametani

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

Kazuo Kigasawa, Mineharu Hiiragi, Kikuo Wakisaka,

Osamu Kusama, Hideo Sugi, and Kumeo Kawasaki

Research Laboratories, Grelan Pharmaceutical Co. Ltd.,

Sakurashinmachi, Setagaya-ku, Tokyo, Japan

1-(2-Tetrahydrofuryl)-5-fluorouracil (1), a potent anti-tumor agent, was conveniently synthesized by the the condensation of 5-fluorouracil (2) with various 2-alkoxy-2,3,4,5-tetrahydrofurans (3a-j), and the best yield of 1 by this method was obtained in the reaction of 2-t-butoxy analog (3h).

l-(2-Tetrahydrofuryl)-5-fluorouracil ($\frac{1}{4}$, Ftorafur) is a clinically effective anti-tumor agent which functions a nucleic acid antagonist. There are many reports on the synthesis of $\frac{1}{4}$, $\frac{1}{4}$, and we also examined a simple preparation of this compound. Now we wish to report an alternative synthesis of $\frac{1}{4}$.

The Hilbert-Johnson procedure has been a representative method to prepare pyrimidine nucleosides, and applied by Russian chemist 1) to the first synthesis of 1 by the reaction of 2-chlorotetrahydro-

furan (4) with 2,4-bis(trimethylsilyloxy)-5-fluorouracil (5). The mercury salt of χ was also used instead of 5. Although several kinds of alternative syntheses of χ by a reaction of some 2-alkoxy-2,3,4,5-tetrahydrofurans with 5 or χ in the presence of acidic catalysts, were widely investigated, these methods have some defects in which unstable material was an intermediate and the process needed a severe condition.

Scheme 1

TMS=trimethylsilyl

In order to explore a simplified synthesis of 1, we examined a condensation of 2 with various 2-alkoxy-2,3,4,5-tetrahydrofurans $(3a-j)^3$ without using any catalysts. Heating 2 (1 g, 7.7 m mol) and 3a-j (11.6 m mol) at 150 - 165° in dimethylformamide for 4 - 5 hr afforded successfully 1 (mp 164 - 165°; lit., 2) mp 164 -

165°) by simple work-up, namely evaporation of the solvent, followed by recrystallization. Among several 2-alkoxytetrahydrofurans (a-j), the highest yield of a was obtained in case of 2-a-butoxytetrahydrofuran (a).

Scheme 2

a : $R=CH_3$, b : $R=C_2H_5$, c : $R=\underline{n}-C_3H_7$

d : $R=\underline{i}-C_3H_7$, e : $R=\underline{n}-C_4H_9$, f : $R=\underline{i}-C_4H_9$

 $g : R = \underline{sec} = C_4^H_9$, $h : R = \underline{t} - C_4^H_9$, $i : R = \underline{n} - C_5^H_{11}$,

 $j : R = \underline{n} - C_6^H_{13}$

Table 1 The Yield of the Reaction of 2 with 3a-j

Starting furans										
(沒a-j)	a	b	С	đ	e	f	g	h	i	j
Yield of 1										
(%)	2.5	12.3	13.0	15.0	9.1	7.8	15.6	67.0	8.1	5.2

This reason would be due to the \underline{t} -butoxy group of $\mathfrak{Z}h$ which is more susceptible to it's elimination than those of the others. However, the reaction of \mathfrak{Z} with $\mathfrak{Z}h$ in the presence of Lewis acid

(AlCl $_3$) gave a less yield of $\frac{1}{k}$ (25 %). Prolongation of the reaction time and addition of more excess of $\frac{3}{k}$ in these reactions improved the yield of $\frac{1}{k}$, but the best yield of $\frac{1}{k}$ was again observed with using $\frac{1}{k}$ h. A detailed investigation of these reaction products revealed that a small amount of 2,4-bis(2-tetrahydrofuryl)-5-fluorouracil [$\frac{1}{k}$, mp 104 - 106 $^{\circ}$; mass (m/e) 270 (M $^{+}$)] was also obtained. Hydrolysis of $\frac{1}{k}$ by means of acetic acid yielded $\frac{1}{k}$ quantitatively.

Thus, a facile synthesis of $\frac{1}{6}$ is now available. The application of this procedure would provide a new class of preparative method of pyrimidine nucleosides.

ACKNOWLEDGEMENT

We thank Dr. K. Fukumoto, Pharmaceutical Institute, Tohoku University for his kind suggestion.

REFERENCES

- 1) S. Hillers, R. A. Zhuk, and M. Lidaks, <u>Dokl. Akad. Nauk (USSR)</u>, 1967, 176, 332 [Chem. Abs., 1968, 68 29664j].
- 2) a) R. A. Earl and L. B. Townsend, J. Heterocyclic Chem., 1972,
- 9, 1141; b) Inst. Org. Sinteza, Japan Kokai Pat., 50-19757 (1975);
- c) Taiho Yakuhin, <u>ibid</u>., $50-50383^{4}$, $50-105673^{4}$, and 50-64281
- (1975); d) Asahi Kasei, <u>ibid</u>., 49-127981 (1974) and 51-8282 (1976);
- e) Mitsui Seiyaku and Mitsui Tohatsu, <u>ibid</u>., 50-5387 (1975) and 51-52182 (1976).
- These compounds were easily prepared by the addition of the

corresponding alcohol to 2,3-dihydrofuran in the presence of acid catalyst: a) M. H. Normant and M. M. Delépine, Compt. rend., 1949, 228, 102; b) E. L. Eliel, B. E. Nowak, R. A. Daignaut, and V. G. Badding, J. Org. Chem., 1965, 30, 2441.

Received, 15th February, 1977