REACTION OF LITHIO DIETHYLSUCCINATE WITH CARBONYL COMPOUNDS: STOBBE CONDENSATION OF α -KETOESTERS

Vichai Reutrakul*, Kosan Kusamran and Sompong Wattanasin Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 4, Thailand

The Stobbe condensation of α -ketoesters was successfully carried out by a two-step procedure. The reaction of lithio diethylsuccinate with α -ketoesters gave the corresponding γ -butyrolactones. Treatment of the lactones with potassium \underline{t} -butoxide in \underline{t} -butanol yielded the expected Stobbe products.

The Stobbe condensation is a well known reaction which has found numerous applications in organic synthesis 1 . One of the limitations of this reaction is that , α -ketoesters cannot be employed as the carbonyl component due to their sensitivity to basic conditions 2 . In this communication we wish to report the first successful Stobbe condensation of the α -ketoesters. Our novel two-step approach is as shown in equation (I).

Lich-co₂Et

$$CH_2CO_2$$
Et

 $+$
 THF
 $-78^{\circ}C$
 $R'O_2C$
 $R'O_2C$
 $+$
 CO_2Et
 CO_2Et

The reaction of (1) with α -ketoester (2) gave lactone (3) in good yield. The reaction of the lactone (3) with potassium <u>t</u>-butoxide in <u>t</u>-butanol resulted in the formation of the expected Stobbe product (4) in high yield.

The following procedure is representative. α -Ketoester (1.0 equiv.) was added, at -78°C, under nitrogen, to a THF solution of lithio diethylsuccinate (1) (generated by the reaction of 2.0 equiv. of lithium diisopropylamide with 1.0 equiv. of diethylsuccinate in THF at -78°C). The reaction mixture was maintained at this temperature for 2 hr before being quenched with dilute hydrochloric acid. The aqueous mixture was extracted with ether and the crude product was purified by column chromatography on silicately (mixture of ether-light petroleum) to give lactone (3). The formation of (4) was effected by the reaction of (3) with potassium t-butoxide (1.0 equiv.) in refluxing t-butanol. The acidic work up yielded the expected product (4). The results are summarized in Table I.

Table I

α-Ketoester	Product 3 (% Yield)	Isomer Rat		Isomer Ratio
о Сн ₃ ссо ₂ сн ₃ н ₃	CO ₂ C _{CH₃} CO ₂ Et	(80.1) 2:1 ^a	Eto ₂ C co ₂ Ct	¹ 3 ₂ H (76.0) 2:1 ^{a,c}
O I II n-Prcco ₂ cH ₃	CO ₂ Et CO ₂ CH ₃	(71.0) 1.5:1 ^k	eto ₂ C co	
о <u>п</u> -в П нссо ₂ ви <u>п</u>	uO ₂ C CO ₂ Et	(60.0) 1:1 ^{b, c}	n-BuO ₂ C H CO	2 ^H (74.0) _d
PhCH ₂ CCO ₂ CH ₃	PhcH 2 CO ₂ Et Co ₂ CH ₃	(24.6) 1:1 ^a	PhCH ₂ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CO ₂ CH ₃	

a By NMR

bBy GLC as the methyl esters: on a 2 m \times 6 mm glass column, packed with 2.5% SE 30 on chromosorb G A/W DMCS treated (80-100) mesh; gas flow rate = 20 ml/min; programmed temperature $150^{\circ}-180^{\circ}$ C.

CBy preparative thick layer chromatography (PLC).

dIsomer ratio cannot be determined.

The assignment of isomer ratios of the lactones (5) and (8) by NMR is made possible by the observation that, in the γ -butyrolactone ring, the carboethoxy group exerts the <u>shielding</u> effect on the <u>cis</u> substituent, e.g. the methyl group in (5B) as compared with that in (5A). In the case of the products (9) and (12), however, the carboethoxy group deshields the

cis substituent, e.g. the methyl group in (9B) as compared with that in (9A).

The isomer ratios of the lactones (6) and (7) were obtained from the chromatographic separation (PLC) of these compounds.

HETEROCYCLES, Vol. 6, No. 6, 1977

The <u>cis</u> isomer (7A) (with respect to the two ester groups) is less polar (by thin layer chromatography and GLC) than the <u>trans</u> isomer (7B).

We are presently exploring the scope and limitation of this reaction.

Acknowledgement We wish to thank the International Foundation for Science (IFS), Sweden, for a generous support of our program.

REFERENCES

- 1. H.O. House, 'Modern Synthetic Reactions', W.A. Benjamin Inc., Menlo Park, Cal., 1972 p.663-666.
- 2. R.L. Augustine and L.P. Calbo, Jr., <u>J.Org.Chem.</u>, 1968, 33, 838 .
- For the synthesis of γ-butyrolactones by the reaction of lithio succinate with ketones see: W.G. Kofron and L.G. Wideman, J.Org.Chem., 1972, 37, 555; K. Fukunishi, Y. Inoue, Y. Kishimoto and F. Mashio, ibid., 1975, 40, 628.
- L.M. Jackman and S. Sternhell, 'Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry', Pergamon Press, London, 1969.
- 5. Cf. B.M. Trost and L. Weber, J.Amer.Chem.Soc., 1975, 97, 1611.

Received, 28th March, 1977