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The r o l e  of h e t e r o c y c l i c  compounds i n  the  synthes is  o f  s u b s t i t u t e d  

aldehydes and ketones i s  reviewed. P a r t i c u l a r  note  i s  made o f  t h e  charge 

p o l a r i z a t i o n  of t h e  masked carbonyl f unc t i on  and the s i t e s  of a l k y l a t i o n  

a v a i l a b l e  w i t h  each heterocyc le  are considered. A t o t a l  o f  eleven hetero-  

cyc les  a re  discussed. 

I n t r o d u c t i o n  

Th is  review surveys some of t h e  app l i ca t i ons  o f  var ious  h e t e r o c y c l i c  

compounds as a ids  t o  t h e  synthes is  of molecules con ta in ing  carbonyl  func- 

t i o n a l i t y .  These heterocycles are 'masked' carbonyls which can serve a 

dual purpose; p r o t e c t i o n  o f  the  carbonyl  and/or m o d i f i c a t i o n  of i t s  

chemical character.  The l a t t e r  r e s u l t  i s  gene ra l l y  due t o  a d i f f e r i n g  

charge d i s t r i b u t i o n  i n  the  heterocyc le  from t h a t  i n  the  parent carbonyl 

compound. 

Because o f  t h e  scope o f  t h i s  t op i c ,  i t  was necessary t o  l i m i t  a r b i t r a r i l y  
the  areas which would be t reated.  The heterocycles discussed a re  those i n  

which: 

1 )  a carbonyl group r e s u l t s  upon cleavage o f  the  heterocyc le  (demasking); 

2) t h i s  carbonyl i s  an aldehyde o r  ketone; 

3 )  t h e  heterocyc le  i s  such t h a t  t he re  i s  t h e  p o t e n t i a l  f o r  genera t ion  

o f  e i t h e r  a p o s i t i v e  o r  negat ive  charge a t  the  carbonyl carbon atom; 

4) a l k y l a t i o n  o f  t h e  heterocyc le  must be poss ib le  ( i .e .  i t  does n o t  
(1) a c t  s o l e l y  as a p r o t e c t i n g  group) . 

Carbonyl t r anspos i t i ons  a re  n o t  included, as no formal a l k y l a t i o n  
occurs i n  these processes. 



The heterocycles i n  quest ion thus f i t  i n t o  two broad categories. 

One c lass i s  t h a t  i n  which the  'carbony l '  carbon(2) i s  e l e c t r o p h i l i c  

(i.e. noma l  carbonyl p o l a r i t y )  and the  o ther  includes heterocycles i n  

which t h e  opposite p o l a r i z a t i o n  i s  developed. Because of t h i s  method 

of organizat ion, and t h e i r  analogous behaviour t o  1,3-dithianes, t h i o -  

aceta l  monosulphoxides were inc luded i n  the  l a t t e r  grouping, although 

they are n o t  s t r i c t l y  speaking, hetero-. Also, heterocycles which 

can behave i n  e i t h e r  fashion, such as furan de r i va t i ves ,  were no t  con- 

sidered, as t h i s  c h a r a c t e r i s t i c  i s  n o t  s u i t e d  t o  the format o f  t h i s  

paper. 

Normal Po la r i za t i on  Reverse Po la r i za t i on  

Wi th in  each o f  t he  two main d i v i s ions  noted above, the  f u r t h e r  

d i s t i n c t i o n  as t o  whether a l k y l a t i o n  occurs a t  the masked carbonyl, 

a t o  t h i s  pos i t i on ,  o r  B t o  i t  was made. 

Notwithstanding the  l i m i t a t i o n s  placed on t h e  t o p i c  o f  t h i s  review, 

i t  was n o t  poss ib le  t o  inc lude a l l  classes o f  heterocycles which met 

the  c r i t e r i a  applied. Hopeful ly,  t he  ones chosen i l l u s t r a t e  the  range of 

syn the t i c  p o s s i b i l i t i e s  and g i v e  a balanced view o f  t h e i r  uses. 

(2)~hroughout  t h i s  review, " 'carbony l '  carbon" i s  used t o  denote 
the  carbon o f  t he  heterocycle which becomes the  carbon of t h e  carbonyl 
upon deblocking. 
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Heterocycles Yie ld ins Nonnal Carbonyl Charqe Polar izat ion 

1) 1,3-Dioxanes 

Treatment o f  2-methoxy-1,3-dioxanes 2, i n  which the methoxy 
subst i tuent  has the ax ia l  conf igurat ion, w i t h  a Grignard reagent 

1 afforded a l,3-dioxane der ivat ive,  2. This process i s  equivalent 

t o  the formylation of a Grignard, as ac id ic  hydrolysis of 2 gives the 
aldehyde 3. I t  was noted t h a t  i f  the methoxy group was equator ia l ly  

oriented, i t  was not  displaced by the Grignard reagent. 

1 was prepared from the corresponding d i o l  and t r imethy l  orthoformate. - 
90 t o  95% of the product possessed the ax ia l  2-substituent. 

Table 1 

Yields of 2-alkyldioxanes from Grignard treatment o f  1 

% 2 
Me- 70% 

Et- 75 

i-Pr- 63 

8- 95 
p-F-8- 94 

p-Br-6- 55 
p-CF3+ 89 



2) Quinazol ines 

Grignard fo rmy la t i on  i s  a l so  feas ib le  v i a  t h e  quinazol ine methiodide 

42, which was prepared by heat ing p- to lu id ine,  fo rma l in  so lu t ion,  and formic  - 
acid, fo l lowed by quatern izat ion w i t h  methyl iod ide.  Both a l i p h a t i c  and 

a r y l  Grignard reagents added t o  5, generat ing 5, which was converted t o  the  

aldehyde by a c i d i c  hydro lys is .  Y ie lds  f o r  t h e  sequence from 4 t o  5 genera l ly  

ranged between 70 and 95% (see Table 2). 

Aldehydes prepared & the  qu inazo l i ne  methiodide 4 

Product ( i s o l a t e d  as DNP de r i va t i ve )  

CH3CH0 

n-C4H9CH0 

dCH2 CHO 

n-C12H25CH0 

Et(Me)CHCHO 

Me2CHCH0 

6CHO 

p-CH30-KHO 

2,5-(CH30)2-dCH0 
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3) 2-Oxazol ines 3 

A t h i r d  heterocycle which allows Grignard formylat ion i s  the subst i tu ted 
4 5 2-oxazoline, I , which can be prepared by heat ing 2-amino-2-methylpropanol 

w i t h  formic acid. Treatment of L w i t h  n-buty l l i th ium causes abst ract ion of 
F - 

HQ . R-C f l  
k ( D )  

the C-2 proton and quenching w i t h  D20 gives the deuterated analogue La. The 
methiodide s a l t  of L o r  La i s  the substrate suscept ible t o  the Grignard 

reagent. The l a t t e r  must be complexed w i t h  two equivalents o f  hexamethyl- 
phosphoramide (HMPA), o r  the amino alcohol L o r  a a  resu l ts .  It i s  be l ieved 
t h a t  the oxazol idine, 9 o r  ?a, i s  i n i t i a l l y  formed and it then complexes w i th  

the Grignard reagent as shown above. 

The aldehyde i s  l i b e r a t e d  from 9_ o r  9_a by hydro lys is  w i t h  oxa l i c  acid. 



Thus t h i s  method provides a simple synthesis o f  aldehydes and C-1  deuterated 
2 aldehydes. However, i t  i s  l im i t ed  t o  Grignard reagents w i th  an sp o r  sp 

hybridized carbanion. The base strength of a l ipha t ic  Grignards i n  HMPA i s  

Yields o f  aldehydes produced from the reaction of 
2-oxazolines and Grignard reagents 

such t ha t  there i s  considerable proton abstract ion from 8 i n  competition 

w i th  addit ion. The y l i d e s z  and 13 are generated i n  these instances. 

A l l  the examples of heterocycles so f a r  c i t ed  have involved a lky la t ion  
a t  the masked carbonyl carbon. 2-Substituted oxazolines, which are also 

prepared from 2-amino-2-methylpropanol and a carboxyl ic acid, can be alkylated 

a t o  t h i s  s i t e  as well6-*. A l ipha t ic  reagents may be used i n  t h i s  var iat ion.  

2,4,4-Trimethyl-2-oxazoline 14 can be a1 kylated using n-buty l l i th ium 
and a var iety  o f  electrophi les6. ' $table ones include a1 ky l  halides, epoxides, and 

carbonyl compounds. I f  15 i s  reduced d i r e c t l y  with borohydride, the amino 

alcohol 18 resul ts .  This i s  due t o  the equi l ibr ium o f  the oxazolidine 16 
with the acycl ic  species E, which i s  fur ther  reduced. However, the methiodide 
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19 i s  reduced t o  the saturated cyc l i c  der ivat ive  g, acid hydrolysis of - 
which y ie lds  the corresponding aldehyde. 

7 2-Substituted oxazolines may also be converted t o  unsymmetrical ketones . 
When 22 i s  t reated with two equivalents of an a lky l l i th ium reagent a t  - 7 8 ,  

the hydrogen a to  the r ing  i s  removed by the f i r s t  equivalent o f  base. As 



Ketones (E,E) from the  a l k y l a t i o n  of 2-subst i tu ted oxazolines 

Y ie ld  (25 o r  9 
89% 

69 

76 

91 

83 

85 

65 

83 

74 

7 1  

29 

37 

30 

74 

96 

64 

74 

62 

60 

62 

45 

36 

23 

29 

20 

34 

the  reac t ion  mix ture i s  < sllowed t o  warm, re? trrangement t o  the  kt ?tenitnine 23 
occurs. The second equiva lent  then adds t o  a, af ford ing an a l ky la ted  l i t h i o -  

enamine. This add i t i on  takes place a t  t he  'carbony l '  carbon. A second 

add i t i on  a t o  t h i s  p o s i t i o n  occurs i f  24 i s  quenched w i t h  an a l k y l  ha l ide.  

Acid hyd ro l ys i s  then gives the  a,a,a-tr isubst i tuted ketone 25. A l t e r n a t i v e l y ,  
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24 can i t s e l f  be hydrolyzed t o  z, an na, -d isubst i tu ted ketone. - 
A s i m i l a r  ketone synthesis was accomplished by reac t ing  the  m e t h i o d i d e g  

7 of 22 w i t h  organometal l ic compounds . Acid treatment o f  t he  adduct 3 gave 

the ketone 29. This procedure was extended t o  a l l y l i c  Grignards, b u t  i n  
8 many instances, o l e f i n  isomer izat ion l e d  t o  mixtures o f  products (Table 5) .  

Table 5 

Ketones synthesized from 2-oxazoline methiodides 

R'M 

E t 

E t  

Et  

Et  

E t  

Et  

E t  

Me 

Me 

E t  

E t  

E t  

R"M % 29 - 
i-PrL i  76% 

EtMgBr 64 

t-BuMgBr 0 

i-PrMgBr 93 

EtMgBr 77 

t-BuMgBr 0 

i - P r L i  88 

EtMgBr 73 

t-BuMgBr 0 

AWCI 38 

62 

& H 2 W  1 88 

72 

28 

Product 

+-7- 



It should a l s o  be noted t h a t  2-oxazolines y i e l d  carboxy l ic  ac ids if 
9 they are hydrolyzed w i thou t  p r i o r  reduct ion by sodium borohydride . This 

heterocyc le  serves as a precursor t o  t h i s  c lass o f  compounds, as we l l  as 

being a p r o t e c t i n g  group fo r  them, s ince they are i n e r t  t o  Grignard 

reagents. Also, es ters  can be generated i f  the  oxazol ine i s  hydrolyzed i n  

an a l coho l i c  medium. No fu r the r  discussion o f  t h i s  app l i ca t i on  w i l l  be 
presented, as t h i s  survey i s  intended t o  deal s p e c i f i c a l l y  w i t h  processes 
cu lminat ing i n  aldehydes o r  ketones. 

4) Thiazoles 

10 Thiazoles have been employed i n  a sequence lead ing t o  aldehydes . 
The scheme i s  s i m i l a r  t o  t h e  synthesis of these compounds via 2-oxazolines, 

discussed above, and *dihydro-1,3-oxazines, which w i l l  be considered 
subsequently. 

Proton abs t rac t i on  from the  2-methyl thiazole g w a s  accomplished w i t h  

n -bu ty l l i t h ium d t  -78' and the  meta l l a ted  species was a l k y l a t e d  w i t h  benzyl 

bromide. Quatern izat ion a t  n i t rogen,  fol lowed by reduct ion, gave the  

saturated heterocyc le  34, a t h i a z o l i d i n e .  The aldehyde was l i b e r a t e d  under 
neu t ra l  condi t ions (an aqueous so lu t i on  o f  mercuric sa l t s ) ,  a valuable 

cons iderat ion when attempting the  synthesis o f  a c i d - l a b i l e  aldehydes. 

I n  subsequent work by Meyers' group, a l k y l a t i o n  was confirmed t o  occur 

a t  low temperatures (<-50°), bu t  d imer izat ion occurred i f  t h e  reac t ion  
11-13 mix ture was allowed t o  warm . 
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5) Thiazol ines 

I n  an analogous method t o  t h a t  j u s t  mentioned fo r  th iazo les,  P-methyl- 

t h i a z o l i n e  36 has been a l ky la ted  and converted t o  several aldehydes 14,14a 

Once again, n - b u t y l l i t h i u m  was used i n  conjunct ion w i t h  an a l k y l  

ha l ide,  b u t  the reduct ion o f  t he  C-N bond was accomplished w i t h  an aluminium- 

mercury amalgam. Primary o r  secondary a l k y l  iodides, benzyl ch lor ides,  and 

a l l y l i c  ch lor ides proved ef fec t ive as e l e c t r o p h i l i c  species. A l ky l  bromides 

gave lower y i e l d s  (55-65%) and a l k y l  ch lor ides afforded n e g l i g i b l e  a l k y l a t i o n  

(0-10%). 

I.) n-BuLi 
2.1 R X  QH2R 

a 

37 
H - 3-s ] I.) n-BuLi I 

A second ( o r  t h i r d )  a l k y l a t i o n  could be ca r r i ed  ou t  p r i o r  t o  reduct ion, 

g i v i n g  products w i t h  fu r the r  s u b s t i t u t i o n  a t  the a-posi t ion. Masked 

cyclopropane- and cyclohexane-carboxaldehydes were prepared by r e a c t i n g  the  

anion o f  36 w i t h  the  appropriate d i h a l i d e  and then adding a second equiva lent  

of base. Reduction and cleavage y ie lded  the  f ree  aldehydes. 

I n  some instances, p a r t i c u l a r l y  i n  the preparat ion of t r i a l k y l a t e d  

acetaldehydes, i t  was found t h a t  y i e l d s  were improved by s u b s t i t u t i n g  l i t h i u m  

di isogropylamide fo r  n -bu ty l l i t h ium.  
The monosubstituted products 39 were prepared i n  50 t o  60% overa l l  y i e l d .  



Table 6 

a-Subst i tuted acetaldehydes from the t h i a z o l i n e  36 

Because o f  t he  neu t ra l  condi t ions employed t o  unmask the  aldehyde, 

Meyers' group extended the t h i a z o l i n e  rou te  t o  the  synthesis of 8-hydroxy- 

Reaction o f  t h e  l i t h i o - t h i a z o l i n e  c w i t h  a  carbonyl 

compound gave the hydroxyth iazo l ine 9. Deblocking was accomplished as 

prev ious ly  out l ined,  a f f o r d i n g  the 6-hydroxyaldehyde 44. The'common problems 

w i t h  t h i s  c lass o f  compounds, l oss  of water o r  reverse a l d o l i z a t i o n  t o  

acetaldehyde and the carbonyl component, were minimized through t h i s  

technique. 
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A v a r i a t i o n  o f  t h i s  method allowed the  o f  t he  homoal ly l ic  

alcohols 49 from 42, as out1 ined below: 

OHC-R 
52 GGz 

cyclopenfyl 

45 46 
I). Hg-A1 
2). Hg+= 

The alcohol f unc t ion  was most s u i t a b l y  protected by reac t ing  the  l i t h i o  

adduct % w i t h  chloromethyl methyl ether.  

6) Dihydro-l,3-oxazines 

Dihydro-1,3-oxazines have proved extremely v e r s a t i l e  i n  syntheses o f  

aldehydes and ketones, for ,  according t o  the condit ions employed, a l k y l a t i o n  
3 can be e f fec ted  a t  t he  'carbony l '  carbon, a t o  t h i s  s i t e ,  o r  B t o  i t  . 

?-Subst i tuted 4,4,6-trimethyldihydro-1,3-oxazines 50 are r e a d i l y  

available16-18, w i t h  most o f  t he  preparat ions i n v o l v i n g  condensation o f  



carboxy l ic  acids, n i t r i l e s ,  o r  amides w i t h  amino alcohols, o le f ins ,  o r  

g lyco ls .  I n  t h e i r  extensive work on oxazine chemistry, Meyers' group found 19 

the condensation of a g lyco l  w i t h  a n i t r i l e  i n  su lphur ic  acid16 t o  be the 

method o f  choice. 

50 - 
I n  the case o f  the oxazine 5, i n  which the 2-pos i t ion i s  unsubst i tuted, 

treatment w i t h  an a l k y l  l i t h i u m  reagent leads t o  the te t rahydro de r i va t i ve  
20 52 . This add i t i on  a t  the 'carbony l '  carbon provides an aldehyde synthesis, - 

f o r  t h i s  adduct y i e l d s  53 upon ac id  hydro lys is .  The y i e l d s  of 52 f o r  R=n-Bu 

and t-Bu were 66% and 5 5%, respect ive ly .  

Although 2-subst i tu ted dihydro-oxazines are i n e r t  t o  Grignard attack, 

the e l e c t r o p h i l i c i t y  o f  the 2-pos i t ion can be enhanced t o  al low a ketone 

synthesis21,22. The m e t h i ~ d i d e ( ~ )  of %was found t o  reac t  w i t h  organo- 

l i t h i u m  o r  Grignard reagents t o  g ive the tetrahydro-oxazine &, the 

equiva lent  o f  a 12-carbonyl  addi t ion.  Acid hydro lys is  then l i b e r a t e d  the 

ketone. The y i e l d s  f o r  the sequence were dependent on the nature o f  the 

(3)  If a p a r t i c u l a r  methiodide i s  non-crysta l l ine,  the corresponding 
methanesulfonate o r  f luoroborate s a l t s  may be used instead. 
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2-subst i tuent  (R) and on the  organometal l ic employed. When R=Me, the  

Grignard was s u f f i c i e n t l y  basic t o  remove the a-proton, as we l l  as add t o  
the C=N l i n k .  A l ky l  l i t h i u m  reagents, being more basic, gave correspond- 

i n g l y  lower y i e l d s  o f  t he  ketone. However, they could be used successfu l ly  
when the  a-protons were less  a c i d i c  (e.g. R=CH2CH2d). 

Hindered Grignards tended t o  cause reduct ion o f  t he  double bond r a t h e r  

than add t o  i t  (Figure I ) ,  and bu lky  reagents which could n o t  reduce the  

C-N bond, such as phenylmagnesium bromide, d i d  no t  react .  The l a t t e r  

problem was circumvented by a1 k y l a t i n g  w i t h  phenyl l i t h i u m  o r  us ing 

2-phenyloxazinium methiodide and the appropriate organometal l ic.  A f i n a l  
l i m i t a t i o n  of t h i s  method i s  t h a t  a l l  attempts t o  produce c y c l i c  ketones 

have f a i l e d  (F igure 2). 

Ketones from the  reac t ion  o f  t he  methiodide 54 
w i t h  organometal l ic reagents 

R - 
dCh2CH2- 

dCH2CH2- 

dCH2CH2- 

dCH2CH2- 

d- 
CH2=CHCH2C(d)H 

cyclopropyl  

R'M - 
EtMgBr 
n-BuMgBr 

n-BuLi 

t-BuLi 
EtMgBr 

MeMgBr 

n-BuMgBr 



A v e r s a t i l e  synthesis o f  subs t i t u ted  cyclopentenones has been devised 23 

us ing t h i s  approach, together w i t h  a l k y l a t i o n  a t  t he  a p o s i t i o n  ( t h e  discus- 

s ion of which fo l l ows) .  It i s  ou t l i ned  below: 

As w i t h  the 2-oxazol ines, th iazo les,  and t h i a z o l  ines discussed pre- 

v ious ly ,  a carbanionic species 63 can be generated, a l l ow ing  s u b s t i t u t i o n  

a t o  the heterocyc le  by a v a r i e t y  o f  e l e c t r ~ p h i l e s ' ~ * ~ ~ ~ ~ ~ .  Reduction t o  

the tetrahydro-oxazine 65 was ca r r i ed  ou t  w i t h  buffered sodium borohydride (4)  

(pH 5-8, pH 7 optimum), fo r  c a t a l y t i c  o r  o ther  metal hydr ide reduct ions gave 

(4) Using sodium borodeuter ide (NaBD4), C - 1  deuterioaldehydes were prepared 
t h i s  route. 
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t he  amino alcohol 

67. The aldehyde - 
acid. 

68, as a r e s u l t  of the r i n g  tautomerism between 65 and - 
66 was l i b e r a t e d  w i t h  aqueous o x a l i c  ac id  o r  90% ace t i c  - 

a,a-Disubstituted acetaldehydes from dihydro-1,3-oxazines 

Qxazine - R'X(E) 

62, R=H - Me1 
n -Pr I  

n-BuI 
ally1 bromide 

2-bromoethyl ether 

i - P r I  

@CH2Br 

3-bromocyclohexene 
62, R=d - Me1 

n-PrBr 

I n  t h i s  sequence, the a l k y l a t i o n  can on ly  be c a r r i e d  ou t  for  a primary 

carbanion o r  when the carbanion i s  fu r the r  s t a b i l i z e d  (e.g. 3, R=B, C02Et). 

With secondary and t e r t i a r y  carbons, the anion i s  on ly  formed a t  a temperature 



a t  which i t  i s  unstable. Rearrangement ensues and a lky lat ion cannot 

compete meaningfully (c does not  react w i th  e lectrophi les) .  When the 

carbanion i s  primary o r  secondary, dimerizat ion occurs a t  the elevated 

temperatures, as i s  represented i n  Scheme 1. 

I n  the above synthesis w4a, primary a lky l  bromides and iodides 

gave good yields, although chlorides could be used i f  they were act ivated 

(e.g. dCH2Cl ,CH2=CHCH2C1 ,CH3CH2CECCH2Cl). However, secondary halides produced 

'R2 
69 70 

Scheme I 

7 2  - 
more el imination products w i th  increasing s t e r i c  bulk, as d id  homopropargyl 

o r  homoallyl halides. The only secondary halides found t o  give good y ie lds  

were those derived from a l i c y c l i c  systems, i n  which s te r i c  bulk i s  reduced. 

a,j+Unsaturated aldehydes were prepared 19,26 by reacting various 

carbonyl compounds wi th the anion 63, followed by reduction and hydrolysis. 
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Simi lar ly  precursors to  y-hydroxyaldehydes and t h e i r  y-0x0 derivatives 

were obtained27 from the reaction o f  epoxides wi th  3. 

Products from the reaction o f  various epoxides 

with the l i t h i a t e d  species 63 

Oxazine Epoxide % (77 & 78) 

63 R=H -* ethylene 63% 

styrene 68 

cycl ohexene 57 

63, R=d -.... ethylene 69 
styrene 61 

cyclohexene 59 



For dihydro-oxazines i n  which the  anion generated was f u r t h e r  s t a b i l i z e d  

(e.g. g, R=&, C02Et), successive a l ky la t i ons  a t  t h i s  p o s i t i o n  could be 
28 c a r r i e d  o u t  w i t h  d iha l i des ,  lead ing u l t i m a t e l y  t o  a l i c y c l i c  aldehydes . 

The sequence i s  i l l u s t r a t e d :  

I). X(CH$nxl I), B H ~ @  
2 1 . n - a u ~ i  ' 

R =  0,co2€t 
Z)."$Q& OH&Hz)n 

I2 80 - 

Table 10 

A l i c y c l i c  aldehydes from dihydro-1,3-oxazines 

Oxazine D iha l i de  Aldehvde a 

63, R=& - 1,4-dibromobutane 60 

63, R=C02Et - 1,4-di bromobutane 72 

a-Formyl es ters  resu l ted  from reac t ion  of t h e  anion o f  oxazines contain- 

i n g  the  carboethoxy group w i t h  a l k y l  hal ides, succeeded by t h e  normal reduc- 
19 t i o n  and hyd ro l ys i s  . I n  t h i s  instance, sodium hydride was used t o  generate 

t h e  doubly s t a b i l i z e d  carbanion 82. 
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The oxazine carbonyl synthesis also allows elaborat ion o f  the side 
19 chain . Since the  heterocycle i s  i n e r t  t o  Grignards, these reagents can 

be used t o  modify other s i tes  i n  the synthon. An example o f  t h i s  appl icat ion 

i s  shown i n  Scheme 2. 

Scheme 2 

2-Chloromethyloxazine, 84, has recent ly  been appl ied by Meyers e t  a l .  
2 r 3 ; 3 6  t o  the synthesis of a-chloroaldehydes and a,@-unsaturated aldehydes . 

When 84 was treated w i t h  l i t h i u m  bis(trimethylsily1)amide (LiBSA) followed 

by an a lky l  halide, the chloro-oxazine 85 was produced i n  high y ie ld .  This 
29 was transformed t o  the a-chloroaldehyde 86 by the usual methods . .. 



Al ternat ive ly ,  84 could be converted i n t o  the phosphonate ester  87 30 

which reacted w i t h  carbonyl compounds3' g i v ing  unsaturated oxazines (5r 
These i n  t u r n  afforded the a,B-unsaturated aldehydes. Conjugated ketones 
were also prepared via the N-methyl quaternary s a l t  90. A l k y l  l i t h i u m  
reagents added i n  the normal manner and ac id hydrolysis gave 92. Overall 
y i e l d s  ranged from 50 t o  80%. 

Table 11 

Product composition from the a l k y l a t i o n  of 84 
i n  l i t h i u m  b is ( t r imethy ls i l y1 )  amide 

RX DHO-CH2C1 (E) DHO-CHRCl (9 - DHO *OH0 

Me1 3% 97% 0% 
E t I  0 100 0 

EtBr 1 93 6 

EtCl 16 
(DHO = Di hydrooxazine) 

A modif icat ion o f  the a-a lky la t ion react ion has been devised which 

allOWS the manipulations t o  be performed a t  room temperature w i t h  sodium 
32 hydride instead of n -bu ty l l i t h ium . The methiodide o f  the 2-methyloxazine, 

94, thus y ie lded the enamine 95. Alky la t ion  and react ion w i t h  the second - 
equivalent of hydride ion  gave 97, conver t ib le  t o  the corresponding aldehyde. 

94 - 
OHC-CHpR 9_8 

. . 
( 5 )  The phosphonium s a l t s  %were found t o  give s i m i l a r  resu l t s  t o  the 

phosphonate esters (Table 12). 
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Vinvloxazines from phosphonate esters o r  phosphonium sa l ts  

R RI 
- - 

0 H 

0 Me 

0 0 
Me Me 

E t  H 

n-hexyl H - (CH2)4- 

2-C5H4N H 

H 0 
Me Me - (CH2I4 - 

% Vinyloxazines (88 o r  a) 
from 87 f r o m  93 

Table 13 

Substituted acetaldehydes a1 ky lat ion o f  94 
(using sodium hydride) 

RX - Aldehyde (m Yield 
d(CH2)31 0HC(CH2)40 51% 
H2C=C(Br)CH2Br 0HC(CH2)2C(Br)=CH2 60 

B C H p  0HCCH2CH28 58 

The i n s t a b i l i t y  o f  the oxazine carbanion 100 a t  elevated temperatures 

(*0-lo0), which resul ts  i n  rearrangement t o  the ketenimine x, provides 

another route t o  Two equivalents o f  the organolithium base 

are used; the f i r s t  generates the anion 100 and the second adds t o  101 t o  

give E, a metallated enamine. Hydrolysis o f  t h i s  compound resul ts  i n  the 

a,a-disubstituted ketone lOJ, o r  i t  can be reacted wi th an a lky l  halide, 

producing an intermediate which u l t imately  gives the ketone 105 wi th  a 



quaternary carbon a t o  the  carbonyl. The a l k y l a t i o n  occurs a t  t he  most 
35 subs t i t u ted  carbon, i n  con t ras t  t o  the p r i o r  r e s u l t s  o f  Stork . 

Oxazines can a l so  be a l k y l a t e d  B t o  the  masked carbonyl group i f  t h e  

2-vinyloxazine 106 i s  employed. While 106 polymerizes when t rea ted  w i t h  
organometal l ic reagents1', 108 can be prepared i n  reasonable y i e l d s  (Table 

15) if an a l k y l  h a l i d e  i s  added t o  106 p r i o r  t o  the  in t roduc t ion  o f  t he  

Grignard The ha l i de  serves t o  t r a p  the  i n i t i a l l y  formed 
magnesium. s a l t .  Reduction and hydro lys is  r e s u l t  i n  the  aldehyde 109, a 
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a-Disubst i tu ted and a - t r i s u b s t i t u t e d  ketones from dihydro-1,3-oxazines 

R1 - R2 - - R 3 ~ i  - R4x Ketone (103 o r  105) Y ie ld  

Me Me dL i  E t I  & 50% 

Me Me n-BuLi Me I 

Me neopentyl sec-BuLi - 63 

Me n-amyl t -BuLi - 

Me n-amyl CH2=CHLi - 

d n-butyl  n-BuLi - 
77 

6 n-butyl  n-BuLi Me 

compound which has been a l ky la ted  a and B t o  the  carbonyl group. 

While 106 i s  polymerized by organometall ics, i t s  subs t i t u ted  de r i va t i ves ,  

2-isopropylidene-oxazine 110 and 2-(a-styry1)-oxazine llJ, reac t  under the  

same condi t ions t o  g i ve  a ketenimine 11238-40. This can be hydrolyzed t o  the  

subs t i t u ted  dihydro-1,3-oxazine 113 and subsequently transformed t o  the  

aldehyde 114, o r  a l ky la ted  as described above t o  g i ve  the a,a-disubst i tuted 

product 116 o r  the a-(quaternary carbon) ketone 118. 



Table 15 

Aldehydes prepared the vinyloxazines 106 

R ' X  

Me I 

dCH2Br 

CH2' CHCH2Br 

0.0 
E t I  

4CH2Br 

dCH2Br 

dCH2Br 

Thus, the above sequences involve the equivalent o f  1,4-addit ion t o  an 

%@-unsaturated carbonyl compound. 
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Aldehydes and ketones synthesized from the vinyloxazines 110 and 111 

RIM - 
t-BuLi 

n-BuLi 

C6HllWr 

t-BuLi 

C6Hl1M9Br 

EtMgBr 

W B r  

n-BuLi 

C6HllMgBr 

sec-BuLi 

i-PrBuLi 

C6HllMgBr 

t-BuLi 

R ~ M  - 

EtMgBr 

0MgBr 

n-BuLi 

MeLi 

MeLi 

EtMgBr 

MeLi 

OMgBr 

71 

OHC 94 

7 )  Isoxazoles 

Isoxazole de r i va t i ves  have proved useful i n  the  synthesis of p o l y c y c l i c  

carbonyl compounds, and, i n  p a r t i c u l a r ,  have been employed i n  two s t e r o i d  

~ y n t h e s e s ~ l - ~ ~ .  A1 k y l a t i o n  of an isoxazole i s  the  equivalent o f  a1 k y l a t i m  B 
t o  the carbonyl. 



Condensation of the diketone 119 w i t h  hydroxylamine leads t o  3,5- 

dimethyl isoxazole 121, which gives the requi red heterocycle 122 on chloro- 
44 methylat ion . E r e a c t s  w i t h  enolates, g i v ing  124, which i s  u l t i m a t e l y  

45 converted i n t o  the a,$-unsaturated ketone 128 . The mechanisms f o r  these 

transformations are shown below: 

A f t e r  3 i s  generated, c a t a l y t i c  hydrogenation cleaves the  N-0 bond t o  

g ive the imino ketone 125, which i n  t u r n  cyc l i zes  t o  126. Basic hydro lys is  

o f  t h i s  compound produces a masked t r i ke tone  121. Loss o f  acetate from, and 

c y c l i z a t i o n  of, t h i s  intermediate y i e l d  128. The sequence o f  steps f o r  the 

conversion of t o  128 i s  n o t  known. 
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The isoxazole 12946, t he  synthesis of which i s  depicted i n  Scheme 3, 

was used i n  the  const ruct ion of t he  A and B r i n g s  of dl-homotestosterone 
41 134 . A l k y l a t i o n  of t he  b i c y c l i c  enolate 130 afforded the  intermediate 

131. Hydrogenation followed by treatment w i t h  basecaused c y c l i z a t i o n  of - 

the B r i n g  t o  g ive 133 v i a  the diketone 132. Known procedures allowed the  

conversion of 133 t o  dl-homotestosterone. The y i e l d  f o r  the conversion o f  



131 t o  133 was 60%, and dl-homotestosterone was prepared from 133 i n  74% 

y i e l d .  

The second s t e r o i d  synthesis had as i t s  key in termediate  the  isoxazole  
42,43 139, which was used t o  a l k y l a t e  the  5-membered c y c l i c  diketone I40 . - 

This ketone formed the D-r ing o f  the s t e r o i d  144. 

Treatment o f  the prev ious ly  descr ibed isoxazole  122 w i t h  t r i p h e n y l  

phosphine formed i t s  phosphonium s a l t ,  which underwent a W i t t i g  reac t ion  

w i t h  2-formyldihydropyran. Hydrat ion o f  136, fo l lowed by ox ida t ion  and 

hydrogenation y i e l d e d  the  saturated lac tone 138. Vinylmagnesium ch lo r ide  

reacted w i t h  t h i s  compound t o  g i v e  the  desired isoxazole. A l k y l a t i o n  o f  

122 - 
135 - 136 
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139 was successful, forming the  en01 ether  141. The D r i n g  o l e f i n  was - 
reduced, a f te r  which hydro lys is  of t he  en01 ether  Jone's ox ida t ion  and c y c l i z a t i o n  

gave the  a.5-unsaturated ketone 142. Reduction o f  t h i s  o l e f i n ,  c a t a l y t i c  cleavage 

of t he  isoxazole r i ng ,  and hydro lys is  resu l ted  i n  a  t rans ien t  t r i k e t o n e  143 
which formed the  desired s t e r o i d  144. I t  should be noted t h a t  the isoxazole 
r i n g  was s tab le  t o  a l l  react ion condi t ions employed u n t i l  i t  came t ime t o  

1  i be ra te  the  masked carbonyl. 

Isoxazoles can a l so  be converted t o  B-dicarbonyl compounds (Scheme 4). 

Polyketo compounds such as 148 are of i n t e r e s t  from a  b iosynthet ic  v iewpoint 

Scheme 4 

and there have been recent  e f fo r t s  t o  r e a l i z e  them i s o ~ a z o l e s ~ ~ ' ~ ~ .  

Condensation o f  t he  l i t h i o  isoxazole 145 w i t h  - y ie lded  the keto-b is-  

isoxazole  147, which can be viewed as a  masked form of the  te t raketo-ester  

148. 145 was prepared by t r e a t i n g  a wi th  n - b u t y l l i t h i u m  a t  -78'. As y e t ,  - 
no r e p o r t  has been made o f  the  actual  conversion o f  147 t o  148. 

Simi la r l y ,  the bis- isoxazole 149 has been ~ r e p a z ~ ~ ,  hydrogenolysis and 

hyd ro l ys i s  o f  which gave the  acetophenone d e r i v a t i v e  m, presumably v i a  the  

in termediate  150. 



Heterocycles Yielding Reverse Carbonyl Charge Polar izat ion 

1) 1,3-Dithianes 

The 1,3-dithiane system was f i r s t  used as a synthetic t oo l  i n  1965 49 

and has since found extensive use as a masked carbonyl capable of reacting 
50 w i th  electrophi les . This amounts t o  an a lky lat ion a t  the carbonyl carbon. 

Thus t h i s  heterocycle i s  valuable i n  modifying the reac t i v i t y  o f  the carbonyl 

group as well  as being an a l te rna t ive  protect ing group which allows regenera- 

t i o n  of a speci f ic  carbonyl when used i n  conjunction w i th  ethylene ketals 

( f o r  example). 

1,3-Dithiane, g, can be prepared51 by the Lewis acid catalyzed reaction 

of propan-1,3-dithiol with formaldehyde. Mono-substituted dithianes 154 are 

s im i l a r l y  available5' (Scheme 5) o r  can be synthesized by a lky lat ion of g, 
as i s  described subsequently. 

BFrEt20  

H fill + HCHO CHCI3 
. n 

sd - 152 

Scheme 5 

n ZnCI2, 

HS SH + RCHO HC'l Or 

BF3 
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The l i t h i o  d i th iane m, o r  the l i t h i o  monoalkyldithiane E, both o f  

which are generated from the corresponding d i th iane w i th  n-buty l l i th ium 

reacts read i l y  w i t h  various halides and when the product i s  hydrolyzed the 
49,50 aldehyde 155 o r  ketone 158, respectively, i s  l i be ra ted  . 

Hydrolysis of the d i th iane i s  generally accomplished under neutral 

conditions, making cleavage compatible w i th  ethylene keta ls  and other ac id 

l a b i l e  protect ing groups. A va r ie ty  o f  methods f o r  t h i s  operation have been 
reported 50'52-60; commonly,aqueous mercuric oxide-mercuric ch lor ide o r  

calcium carbonate-mercuric ch lor ide was used, but other methods have been 

introduced i n  e f f o r t s  t o  improve y ie lds  and u t i l i z e  less expensive reagents. 

Some of the hydro ly t ic  reagents which have proved useful are presented i n  
Table 17. Seebach's review o f  d i th iane chemistry50 gives addit ional data. 

The d i th iane can also be cleaved w i th  Raney n ickel  t o  give an alkane, but  

t h i s  f a l l s  outside the scope of t h i s  paper and w i l l  not  be elaborated upon. 
The v e r s a t i l i t y  of the d i th iane system has been exploited t o  produce a 

wide var ie ty  o f  carbonyl compounds, and some o f  the react ion poss i b i l i t i e s  

are summarized i n  Table 18. A l l  these examples are from work performed up 
50 t o  1969 and t h i s  period i n  the d i th iane f i e l d  has been reviewed by Seebach . 

Recently, a fu r ther  review o f  d i th iane chemistry has appeared50a. Some o f  

the 'h igh l igh ts '  of recent efforts i n  d i th iane chemistry w i l l  be discussed 

below without deta i led examination o f  the ear ly  work. 

Opt i ca l l y  ac t i ve  aldehydes and ketones have been prepared by react ion 

o f  a d i th iane w i t h  an op t i ca l l y  act ive The iodide l6J, prepared 
from (S)-2-methyl-1-butanol 159, reacted w i t h  the l i t h i o  d i th iane t o  give 161. 



Table 17 

Reagents employed f o r  the hydrolysis of 1,3-dithianes 

Reagent 

HgC12 

HgC1 ?-HgO 

HgC12-CaC03 

HgC12-CdC03 

NBS 

NBS-AgN03 

NCS-AgN03 

Hgo-BF3 

C U C ~ ~ - C U O  

M~I-(co;~) 

Ceric amn ium n i t r a t e  

TI ( I1 I ) t r i f l uoroaceta te  

M~FSO~I'OH 

H2S04 

O-mesitylenesulphonyl- 
hydroxyl amine 

Conditions 

90% MeOH o r  THF 2-4h 
re f lux  

90-94% MeOH 1-5h re f l ux  

80% MeCN o r  90% MeOH 

96% acetone, 5 min, 
-5 t o  -100 

aqueous CH3CN o r  acetone 

aqueous CH3CN o r  acetone 

H20-THF,RT, few min 

99% acetone, l h  ref lux 

moist acetone, r e f l ux  
sev. h 

75% CH3CN,RT, 3 min 

RT, 5 min 

RT, l h  

RT, 20 min 

1) CHC1 3,RT, 30-60 min 

2) H20 

Reference 

50,52 

50,52 

50,52 

50 

50,52 

52 

50,52 

53 

54 

55 

56 

57 

58 

59 

60 

This was hydrolyzed t o  the (S)-aldehyde o r  (S)-ketone 162 i n  high opt ica l  

y ie ld.  Also, m w a s  oxidized t o  the aldehyde z w h i c h  was reacted wi th 

propan-1,3-dithiol t o  give 164. Alkylat ion and hydrolysis afforded 166. 
Only 20% loss o f  a c t i v i t y  resulted from t h i s  sequence, i n  which the 

a lky la t ion  was a to  the asymmetric centre. / 
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Table 18 

Reactants 
A 

Some representative carbonyl compounds synthesized 

from 1,3-dithianes 

Final Product Reference 



2 .  In cases where alkylation occurs by Sn displacement at the asymnetric 
centre, inversion of configuration occurs. The optical yield is approximately 

(R)-2-IODO- (Sl-2-IODO- 

Q OCTANE OCTANE , fi 
yc 1731s) 

Li 
153 - H H13% he - I Me C6H13 
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10% higher when the  a c t i v e  ha l ide i s  used t o  a l k y l a t e  the  l i t h i o  methyl- 

d i t h i a n e  m, ra the r  than 153. It was reasonedK3 t h a t  the  methyl group 

caused a higher degree o f  invers ion i n  the  a l ky la t i on .  

The l i t h i o  methy ld i th iane 168 has been reacted w i t h  carbonyl compounds 

t o  produce po ly funct iona l   ketone^^^'^^. Condensation of 168 w i t h  cyclo- 

hexenone l e d  t o  the  h i g h l y  ac id  l a b i l e  adduct 176. I n  the presence of acid,  

i t  rearranged t o  another a l l y l i c  alcohol,  m. Oxidat ion w i t h  maoganese 

d iox ide  and hydro lys is  o f  the d i th iane  y ie lded  the  diketone 178. 176 proved 

t o  be so sens i t i ve  t o  ac id  t h a t  when i t  was hydrolyzed w i t h  mercuric 

ch lor ide,  i t  was isomerized by t h e  t races o f  hydrogen ch lo r ide  l i be ra ted .  

This could be prevented by us ing an ac id  scavenger such as calcium carbonate. 

I n  t h i s  instance 2 was the product. 

Dithianes a lso show promise i n  the synthesis of prostaglandins. 
Woessner and A l l i s o n  have synthesized the  hydroxycyclopentenone =us ing 

the  d i th iane  moiety as the key %was a l ky la ted  w i t h  the  d i e t h y l  

aceta l  of bromoacetaldehyde and the adduct =was hydrolyzed t o  the  
corresponding aldehyde. Reaction of = w i t h  l i t h i o  methyldi thiane y ie lded  

the hydroxy-bis(di thiane) 185, which was then deblocked and cyc l i zed  t o  187 
The aceta l  and d i t h i a n e  perform complementary r o l e s  as p ro tec t i ng  groups i n  

t h i s  e f f i c i e n t  synthesis, which has as one o f  i t s  intermediates an ac id  



l a b i l e  a-hydroxyketone 186. 

When 1,3-dithiane i s  t rea ted  w i th  the f luoroborate o f  tr iphenylf luoro- 
69 methane, the 1,)-dithienium s a l t  189 i s  formed . I t  i n  turn reacts wi th  

dienes i n  a cycloaddit ion process to  give 190. A rearrangement product, a 
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vinylcyclopropane 191, then resu l ts  from n - b u t y l l i t h ? ~ ~  treatment and t h i s  
compound y ie lds  a spirodithiane when heated. As 192 i s  hydrolyzed under 

neutral conditions, an unsaturated ketone 193 i s  formed w i th  no rearrangement 

t o  conjugated material .  Calcium carbonate i s  used w i th  the mercuric ch lor ide 

t o  mop up the small amounts of ac id released i n  the hydrolysis. 

I n  the above sequence, 189 i s  i n  e f f ec t  a masked form of carbon monoxide. 

The 1,3-dithiane heterocycle has been applied t o  the synthesis of the 
70 macrolide an t i b i o t i c  pyrenophorin, 206 . Reduction o f  the lactone 194 gave 

. - 

ethyl formote 

L200 R = C O C H 2 B r I  1l.h~ 
2 9  R. COCH a P a 3  2Loq.NoOH 

n n 

DEN = 1.5-diatabicyclo [4Sq non-5-ene 
EIZK * Me-imidazol-1- yl ketone 



the  hemi-acetal 195 which was simultaneously opened and converted t o  the 

d i th iane  alcohol 196. Hydroxyl protect ion and formylat ion y ie lded 197. A 

series o f  transformations gave %which underwent a W i t t i g  react ion w i t h  

197 t o  produce 202. Further manipulations gave 204 which could be lactonized 

t o  y i e l d  05. Deblocking i n  N-chlorosuccinamide-si lver n i t r a t e  gave the 
desired macro1 ide  206. 

Seebach and L e i t z  have a c ~ o m p l i s h e d ~ ~  the 1,4-addition o f  2- l i th io-1,3-  

d i th ianes t o  subst i tu ted w-nitrostyrene% 207 t o  g ive adducts o f  type 209. 

Note, however, t h a t  t h i s  i s  s t i l l  an a l k y l a t i o n  a t  the masked carbonyl. 

Typical resu l t s  are presented i n  Table 19, b u t  the authors reported t h a t  

y i e l d s  had n o t  been optimized i n  many instances. 

Table 19 

Structures and y i e l d s  o f  n i t r o d i t h i a n e  adducts (m 
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Much o f  the  recent  work i n  the  d i th iane  f i e l d  has invo lved compounds 

exempl i f ied by 211, a ketene th ioaceta l .  They had been prepared by Corey 

and ~ a r k l ~ ?  the  W i t t i g  reac t ion  o f  an aldehyde w i t h  213. This i s  n o t  a  

general procedure for  i t  i s  unsuccessful w i t h  ketones, even under f o r c i n g  

condi t ions.  Also, there i s  the  problem o f  contamination w i t h  214. 

Another non-general rou te  t o  ketene th ioaceta ls  was discovered by 
73 Marshall and B e l l e t i r e  . Treatment o f  the tosy la te  215 w i t h  phenyl l i t h i u m  

caused the e l im ina t ion  reac t ion  shown, t o  produce 216. This was accomplished 
f o r  R=H,CH3. 



A more useful procedure was a r r i ved  upon by several groups 74-78 in 

quick succession. Reaction of 2- l i thio-1,3-dithiane w i t h  t r i m e t h y l s i l y l  

ch lor ide gave 212, The anion generated from t h i s  compound w i t h  n-buty l l i th ium 

reacted w i t h  e i t h e r  aldehydes o r  ketones t o  give the ketene 

th ioaceta l  211. Some examples, along w i th  the y i e l d s  obtained, are 

presented i n  Table 20. 

/\I Ma-jsiCl (‘1 1). n-BuLi 

Sx". 
n 

H LI 

21 7 - 211 - 

Table 2 0 ~ ~  

Yields of ketene th ioaceta ls  211, and carbonyl compounds 

employed i n  t h e i r  synthesis 

n-PrCHO 

i-PrCHO 

dCH=CHCHO 

OCHO 

MeCOMe 

BCOMe 

OCOB 

Using t h i s  method, Carey and Court prepared7' the conjugated a lky l idenedi th iane 

219a, which underwent a Diels-Alder react ion w i th  maleic anhydride - 
t o  give 20. Once again, t h i s  amounts t o  an a l k y l a t i o n  a t  the  'carbonyl '  

carbon. Hydrolysis of 220 y ie lded the  keto-acid 222 as we l l  as some o f  the 
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methyl es ter  221. AS a r e s u l t .  the crude mixture was t reated w i t h  methanol- 

su lphur ic  acid, af fording pure =. The y i e l d  from - 220 was 58% wh i le  m a  

was transformed t o  220 i n  60% y i e l d .  

n 21911 R'= R2= Me, R ~ = H  
b R ' = % , R ~ =  R3=H 
c R' = -KH2 1, = R2, R 3 4 e  

217 - 2 
218 - 

reflux Me 

221 - 2 2 0  - 

me 
223 - 

Another useful reac t ion  o f  a lky l idene d i th ianes i s  t h e i r  conversion t o  

the  saturated d i th iane  225. This was achieved by successive treatment of 
74 211 w i t h  t r i f l u o r o a c e t i c  ac id  i n  dichloromethane, and t r i e t h y l s i l a n e  . - 

Hydrolysis o f  225 then gave the  a ,wdisubst i tu ted aldehyde 226. 



The anion 228, generated from ketene thioacetals with n-butyllithium 
in hexamethylphosphoramide, reacted with alkyl halides to give the olefinic 

80 species 229 . Hydrolysis with 0-mesitylenesulphonylhydroxylamine yielded 

the a,B-unsaturated ketone 230. Some of the ketones synthesized in this 

manner are presented in Table 21. 
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Table 21 

a,@-Unsaturated ketones prepared from ketene th ioaceta ls  (E) 

Ketone Y ie ld  

A 1,4- o r  'Michael '  add i t i on  t o  conjugated ketene th ioaceta ls  has a l so  
81 been r e a l i z e d  by SeebachLs group . This amounts t o  a l k y l a t i o n  y t o  the 

masked carbonyl. Hydrolysis of 232. the a l k y l a t i o n  product, again y ie lded  

an a,@-unsaturated carbonyl compound. When l i t h i u m  diisopropylamide was 

used ins tead o f  an a l k y l l i t h i u m  reagent, proton abst ract ion occurred and 

the  anion reacted w i t h  the  a1 ky l  ha l i de  as shown (235 - m. 



82 Meyers' group have prepared the cyano ketene thioacetal 239 . Metal- 

l a t i o n  w i th  n -bu ty l l i t h ium and quenching o f  the resu l tan t  anion w i th  an 

a l ky l  ha l ide gave mixtures o f  the products 241 and 242. No fur ther  applica- 

t ions o f  t h i s  work have ye t  been published. 

The methoxydithiane 3 reacted w i t h  two equivalents of an organolithium 
83 reagent t o  give the anion 245 which was quenched w i th  an a l ky l  ha l ide . 

Thus an a lky la t ion  was achieved a t  the 'carbonyl '  carbon and a t o  it. Some 

resu l ts  are summarized i n  Table 22. 

T o r i i  a have published83a the resu l ts  o f  reactions o f  di thianes 

w i th  epoxides. Thus, 2-(2-hydroxy-2.6-dimethyl-5-heptenyl)-1,3-dithiane 248 
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HCONMe2, (‘1 fi 
S S 
HXCHO 
2 37 - 

@ 3 ~ = ~ ~ ~ ~  

236 (EXCESS 237) - 



Table 22 

Thioketals prepared from the methoxy-thioacetal 243 

was prepared by react ing 

RI - % 46 (from 243) 

91% 

94 

98 

79 

2 - l i t h i o -  

1,3-dithiane. Several transformations o f  3 were effected, as seen i n  

Scheme 6, and i t  was subsequently converted t o  l i n a l o y l  oxide 253. 
I n  a p r i o r  c o m n ~ n i c a t i o n ~ ~ ~ ,  t h i s  group described the react ion of the 

diepoxide 254 wi th  153 t o  g ive the cyc l i c  c0~DOUnds 255, 256 and 7. - 
Dithianes have been employed83c i n  a new synthesis of funct ional ly  

substi tuted cyclopentenones. Reaction of 153 with 2,2-dialkoxynitr i les 

258 gave the intermediate 259 which i n  tu rn  afforded the a-diketo-dithiane - 
260 i n  50 t o  70 percent y i e l d  from 258. The cyclopentenone derivat ives 262 - 
were prepared by the react ion of v iny l  triphenylphosphonium sa l t s  w i th  the 

enolate anion o f  260. 
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CH3CN / Hz0 

Scheme 6 

Ac20/pyrldine 
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2) 1,3-Dithiepanes 

A modi f ica t ion of t he  d i th iane  rou te  t o  carbonyl compounds has u t i l i z e d  

de r i va t i ves  of 12-dimethyl-4,5-di(mercaptomethy1)benzene 263. The masked 

carbonyl compounds 264 are r e a d i l y  prepared from 263 and the  appropr ia te  
aldehyde o r  ketonei3r'The above compounds are c r y s t a l l i n e  and lack  the 

foul  smells genera l ly  associated w i t h  t h i o l s ,  th ioaceta ls ,  o r  th ioke ta l s .  

I n  t h i s  respect, they offer a d i s t i n c t  advantage over the  1,3-dithianes. 

With regards t o  r e a c t i v i t y ,  they behave i n  an analogous manner t o  the  l a t t e r  

compounds; they are s tab le  t o  hot  aqueous so lu t ions of acids and bases, 

Grignard reagents, and reducing agents o f  t h e  borohydride type, they can be 

cleaved w i t h  mercuric s a l t s  t o  regenerate the carbonyl moiety, and they can 

be n ~ e t a l l a t e d ' ~ ~  w i t h  n -bu ty l l i t h ium i n  order t o  e f f e c t  a l k y l a t i o n  a t  t he  

carbon o f  the masked carbonyl. 

F luor inated keto alcohols E, i s o l a t e d  as t h e i r  DNP der ivat ives,  were 
prepared83e by treatment of t he  anion of 2 w i t h  a small excess o f  1,2-epoxy- 

34luoropropane and subsequent cleavage of the th ioace ta l  o r  t h i o k e t a l  

produced w i t h  mercuric chlor ide-mercuric oxide i n  methanol. Overal l  y i e l d s  
ranged from 6 t o  43 percent. 



Mori and h i s  co-workers have reacted the l i t h i a t e d  species 265 (R-H, 

Me) w i t h  various a lky l  hal ides t o  give compounds t y p i f i e d  by 3583f. Their 

resu l t s  are presented i n  Table 23. Cleavage t o  the corresponding aldehyde 
54 o r  ketone was effected w i t h  cupr ic  oxide-cupric ch lor ide . 

Table 23 

Results o f  1,3-dithiepane a l k y l a t i o n  

A lky la t inq  Agent S ta r t ing  Mater ia l  

n-C4HgBr - 264 R=R'=H 

R=Me,R'=H 

H2C=CHCH2Br - 264 R=R1=H 

R=Me,R'=H 
0CH2Br - 264 R=R3=H 

R=Me,R1=H 

!:+ CH(CH2)2Br 264 R=R8=H 

R=Me,R'=H 

n-C10H21Br - 264 R=R1=H 

R=Me,R'=H 

Product 

264 R1=n-C4H9,R=H - 
R'w-C H R-M 

4 9 ' - e  
264 R1=H2C=CHCH2,R=H - 

R'=H2C=CHCH2,R=Me 

264 Rb=OCH2,R=H 

R'=&H2,R=Me 

264 R1=  )=cH(cH~)~,R=H - 
R'= > C H ( C H ~ ) ~ , R = M ~  

264 R'=n-C10H21,R=H 

R'=n-CIOH21.R=Me 

3) Thioacetal Monosulphoxides 

Recently, Schlessinger's group have developed procedures by which 

carbonyl compounds can be prepared from th ioaceta l  monosulphoxides. Although 

no t  c y c l i c  compounds, they w i l l  be discussed here as they were introduced as 

a v e r s a t i l e  a l t e r n a t i v e  t o  the d i th iane  system. 

I n  searching f o r  an unsymmetrical sulphur system t h a t  could be a lky la ted 

by a,6-unsaturated carbonyl systems as we l l  as a1 ky l  ha1 ides, Schlessinger 

examined the previously reported sulphoxides xa4 and 269!5 which were sa id 

t o  reac t  w i t h  e lect rophi les,  bu t  he could no t  reproduce the reported resu l t s  
86 s a t i s f a c t o r i l y  . However, the d ie thy l  analogue of 3 gave the anion 271 
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q u a n t i t a t i v e l y  i n  less than t h i r t y  minutes when t rea ted  w i t h  n -bu ty l l i t h ium 

o r  l i t h i u m  di isopropylamide a t  zO, and i t  could be monoalkylated 

i n  greater  than 95% y i e l d .  A second a l k y l a t i o n  could be accomplished using 

the  same condit ions; t h i s  t ime i n  be t te r  than 90% y i e l d .  Hydrolysis o f  272 

r0 
EtS) w$Li EtS) EtS or LDA 

@ -  RX 

EtS 
LDA EtS EtS 

270 - 271 272 J" 1 A, 
RCHO 
274 - r75 

o r  273 gave the  corresponding aldehyde o r  ketone. The deblocking was 

performed i n  q u a n t i t a t i v e  y i e l d  w i t h  a c a t a l y t i c  amount of 70% perch lo r i c  

acid,  b u t  the re  was a problem o f  contamination w i t h  e thy l  disulphide. This 

presented d i f f i c u l t i e s  w i t h  aldehydes o r  ketones having a b o i l i n g  p o i n t  of 

less than 220' a t  one t o r r ,  b u t  could be avoided by hydrolyzing the  

th ioaceta l  monosulphoxide i n  the  presence o f  a mercuric s a l t .  Four equiv- 

a lents  o f  mercuric ch lo r ide  i n  a 4 : l  mix ture of te t rahydrofuran and 9N 

hydroch lor ic  ac id  was found t o  be the optimum 'reagent ' ,  g i v ing  the  deblocked 

compound i n  80-95% y i e l d .  

The th ioaceta l  monosulphoxide 270 was prepared by reac t ing  formaldehyde 
w i t h  e thy l  mercaptan and ox id i z ing  the  th ioaceta l  produced w i t h  metaperiodate. 

Schlessinger a l so  found t h a t  the anion =would add i n  a 1,4-fashion t o  
87 a,B-unsaturated carbonyl compounds . Yields w i t h  a v a r i e t y  of funct ional 

group types were uniformly i n  the  80 t o  95% range, p rov id ing  an exce l l en t  

synthesis of 1,4-dicarbonyl systems. Typical r e s u l t s  are depicted i n  Scheme 

7. Two equivalents of cyclopentenone were requi red t o  produce a 70% y i e l d  

(based on the th ioaceta l  o f  t he  adduct 278, and cyclohexenone and i t s  

de r i va t i ves  gave on ly  moderate y ie lds .  

The unsubst i tuted anion 271 was a l so  found t o  undergo conjugate add i t i on  



n-BuLi OMe 

EtS EtS 
276 

EtS 
SMe (94%) 

EtS 

EtS 
(92%)  

EtS (95%) 

(96%) 
Scheme 7 

with a,@-unsaturated esters (Scheme 8 ) ,  but added to the carbonyl moiety of 
unsaturated ketones. The latter characteristic was later developed by this 

r0 
EtS EtS 
2 4 3  

- \ Et! Scheme 8 

=(:::Me E (93 %) 
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group as a means of acy la t i ng  thioacetals8* and w i l l  be discussed sub- 

sequent1 y. 

The ease w i t h  which the  th ioaceta l  de r i va t i ves  condensed w i t h  

unsaturated carbonyl systems lead ing u l t i m a t e l y  t o  I,$-dicarbonyl s t ruc tures,  

was exp lo i ted  by Schlessinger g. &?' i n  h igh y i e l d  syntheses o f  dihydro- 

jasmone 279 and G - j a s m o n e  280. These routes a re  presented i n  Schemes 9 

and 10. 

Scheme 9 

~t s 
)O + 

T s W  
EtS 

279 (74% OVERALL) - 

Scheme 10 

/ 

CATALYST 
a 0  

(63% OVERALL) 



The anion 2ll undergoes smooth 1,Z-addition t o  aldehydes, ketones, 
88 esters,  and ac id  ch lor ides . The l a t t e r  two types o f  compounds requ i re  

two equivalents of t he  anion, whereas aldehydes and ketones reac t  on a 1:l 

basis.  Some t y p i c a l  r e s u l t s  are presented i n  the  fo l l ow ing  tab le :  

Table 24 

Products from the  condensation of aldehydes, ketones, esters,  

and a c i d  ch lor ides w i t h  t h e  th ioace ta l  monosulphoxide anion 271 

Carbonyl Compound 

A H O '  

Adduct 

EtS7& 

EtS 

€+$$ 
EtS 

.$pj 
EtS 

EtS 

0 

E t 9  

EtS 

0 

€+.A 

EtS 
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A f t e r  hydro lys is ,  a- funct iona l ized o r  a,8-unsaturated carbonyl compounds 

r e s u l t .  

For subs t i t u ted  analogues o f  t he  anion, the  reac t ion  s t i l l  proceeds 

i n  h igh y i e l d  w i t h  aldehydes and ac id  ch lor ides,  b u t  es ters  and ketones 

r e a c t  on ly  s lugg ish ly .  

Reaction o f  281 w i t h  an aldehyde y ie lded the anion %which was 
88 quenched w i t h  acety l  ch lor ide,  forming the  es te r  283 . On r e f l u x i n g  t h i s  

compound i n  potassium hydroxide-benzene, e l im ina t ion  t o  the  ketene th ioaceta l  

monosulphoxide 284 occurred. These compounds were used as 2-carbon Michael 

receptorsg0, r e s u l t i n g  i n  the  equivalent o f  a l k y l a t i o n  a t o  a  carbonyl and 

281 - J 

C H $ O & ~  

M e < R 4  KOH / # 
MeS MeS MeS)4RC0Me 

284 283 

u l t i m a t e l y  producing 1,4-dicarbonyl systems. The general ized reac t ion  i s  

shown i n  Scheme 11. This Michael add i t i on  was ef fec t ive w i t h  three classes 

Scheme II 

r0 , "p 
MeS MeS 

X 

of compounds: enamines, sodium enolates der ived from fbdicarbonyl compounds 

(o r  o ther  compounds capable o f  generat ing a  doubly s t a b i l i z e d  anion), and 



l i t h i um enolates derived from simple ester systems. Some examples and the 

corresponding y ie lds  can be found i n  Table 25. 

Table 25 

Products from the Michael addi t ion o f  various anionic 

species t o  the ketene thioacetal 284 

Reactants Product 

t-BuO2CW SMe 

Yield 

92% 

98 

94 

90 

I n  the case o f  the reaction between 284 and 6-dicarbonyl systems, the 
91 anion =was formed and then was equi l ibrated t o  286 . Addition of an 



HETEROCYCLES, VoI. 6, No. 6, 1977 

a l k y l  ha l i de  t o  t h i s  anion l e d  t o  the  th ioaceta l  monosulphoxide 287, a 

precursor t o  unsymmetrical 1,4-dicarbonyl compounds. 

This technique was appl ied t o  the synthesis o f  rethrolones (m)" and 

proved t o  be an e f f i c i e n t  method g i v i n g  uniformly h igh y i e l d s  (Scheme 12). 

Scheme 12 

4) 1,2-Isoxazines 

Olef ins  and a-chloronitrones 290 undergo a cyc loaddi t ion reac t ion  i n  

the  presence of s i l v e r  te t ra f luoroborate ,  af fording isoxazinium s a l t s  291 
i n  h igh  Neu t ra l i za t i on  w i t h  potassium carbonate produces the 

isoxazine 292 which rearranges t o  the  imine 293, when heated. F ina l l y ,  an 

a,&unsaturated aldehyde r e s u l t s  from hydro lys is  of t h i s  compound. The ne t  

r e s u l t  i s  a l k y l a t i o n  a t o  a carbonyl and formation o f  a t r i s u b s t i t u t e d  



o l e f i n ,  t he  l a t t e r  o f t e n  a  d i f f i c u l t  o b j e c t i v e  i n  a  synthet icprogram.  

When unsymnetric d i -  and t r i s u b s t i t u t e d  o l e f i n s ,  o r  nuc leoph i l i c  
3 

aromatic nuc le i ,  were reacted w i t h  290 ( R  =Me) i n  l i q u i d  sulphur dioxide, a  

novel s u b s t i t u t i o n  was observedg5 r a t h e r  than a  cyc loaddi t ion process, 

a f f o r d i n g  295. The 8,y-unsaturated aldehyde 296 was i s o l a t e d  by a c i d  

treatment o f  295. 



HETEROCYCLES, Vol. 6, No. 6, 1977 

When the a-chloronitrone =was added to silver tetrafluoroborate in 
sulphur dioxide in the presence of an acetylenic compound, followed by basic 
alumina treatment, an a,B-unsaturated ketone 300 was obtainedg6 in 70 to 80 
percent yield,  presumably* the cyclic species 298 and 299. 



Table 26 

Subs t i t u t i on  products (m o f  a-chloronitrones and o l e f i n s  

Yield 
Cycloaddi t i o n  

O l e f i n  Product (295) 295 - Product 
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Rather than t r y  to  summarize i n  words the var ie ty  of carbonyl compounds 
avai lable  % the eleven heterocycles considered, the general s t ructura l  

features avai lable  from each one are  presented i n  a table:  

Structural  features o f  carbonyl compounds avai lable  from 

the  heterocyclic compounds discussed 

Heterocycle g+g.g Other Product 
P o r n n s  - ms 

Z;z7 CARBONIL RCHO H e  

I 

a Y T d  CARBONYL 
Me 

RCHO H @ 

x&tI CARBONYL ( a )  H @  

Irk% 

E+~O NEUTRAL 



Heterocycle A1 kylation - Other Product 
Position Positions 

CARBONYL 

NEUTRAL 

Rf&Ho NEUTRAL 

RCHO 

CARBONYL 
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Heterocyc le  A l k y l a t i o n  Other Product 
P o s i t i o n  poz'E6ns 

R R 
a CARBONYL hR 

CARBONYL 

.-. 
CARBONYL 

Demasking 
Condit ions 

H @  

t i @  

H @  

H @  

H @ 

H 

H Q  



Heterocycle Alkylation Other Product 
Position PoZf%s 

P a CARBON YL R 2 h 1  
R  a- 

CARBONYL ECHO 

CARBONYL 

CARBONYL 

ms 

H @  

H @ 

[HI loon 

NEUTRAL, HCB 

NEUTRAL, H @ 

NEUTRAL,H@ 

NEUTRAL,H@ 
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Heterocycle 

n 

Alkylation Other PPDdUCt 
Position Po?ZKns 

CARBONYL R ~ R Z  

CARBONYL RT 
Q CARBONYL R' 4 

CARBONYL 
S, 

ms 

NEUTRAL,H@ 

NEUTRAL. H Q 

NEUTRAL, HQ 

NEUTRAL, H Q 

NEUTRAL 

, . 



Heterocycle A1 k y l a t i o n  - Other Product Dernasking 
Pos i t i on  Pos i t ions Conditions 

CARBONYL 
Me NEUTRAL 

NEUTRAL 

0 .+ j 
EtS 

CARBONYL E-CHO, 
H @ 

* 

CARBONY L H8 

CARBONYL H @  

a 
MeS 

OHC 

NEUTRAL 
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Heterocycle A1 k y l a t i o n  Other Product 
Posi t ion  P d s T G n s  

Q%OQ (REARRANGEMENT) 
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