HETEROYOHIMBINES AND THEIR CORRESPONDING OXINDOLES, III (1). A CHEMICAL CORRELATION THROUGH SECO-OXINDOLES

Françoise Sigaut-Titeux, Louisette Le Men-Olivier, Jean Lévy

and Jean Le Men*

Faculté de Pharmacie, E.R.A au C.N.R.S. n°319, 51, rue Cognacq-Jay, 51096 REIMS CEDEX, FRANCE.

Seco-oxindoles were obtained both from oxindoles and 7-chloro indolenines through reduction with a 1:1 mixture of formic acid and formamide.

Structure elucidation of oxindole alkaloids $\underline{4}$ mainly rests on two inverse pathways of chemical correlations, i.e. (table 1):

- a) The oxidative pathway described by Finch and Taylor (2), leading from indolic heteroyohimbines $\underline{1}$ to oxindoles $\underline{4}$ $v \dot{t} \alpha$ 7-chloro- or 7-acetoxy-indolenines $\underline{2}$ and imidoethers $\underline{3}$.
- b) The reductive pathway described by Aimi, Yamanaka, Endo, Sakai and Haginiwa $^{(3)}$, leading from oxindoles $\underline{4}$ via imidoethers $\underline{3}$ to 2,3-seco-indoles $\underline{6}$, which are further oxidised and cyclised to $\underline{1}$.

Seco-oxindoles $\underline{5}$ were thought to be interesting derivatives in view of similar correlations. They were easily obtained in one step through

reduction, by means of a refluxing 1:1 mixture of formic acid and formamide $^{(4)}$, either of oxindoles 4 or of 7-chloro indolenines 2 (R = Cl) derived from heteroyohimbines. Generation in acidic medium of the same immonium \underline{n} from (7R)-oxindoles ("B"-type) or (7S)-oxindoles ("A"-type) explains the reductive formation of seco-oxindoles \underline{p} (table 2). In the case of 7-chloro indolenines \underline{r} derived from indoles \underline{q} , the intermediacy of species \underline{s} , \underline{t} , \underline{t} - \underline{m} , and \underline{n} may be admitted.

TABLE 1

⁽a) R_1 , R_2 =H; (b) R_1 =@Me, R_2 =H; (c) R_1 =H, R_2 =OMe; (d) R_1 , R_2 =OMe. i, R=Cl(t BuOCl, Et_3 N) or R=OAc(Pb(OAc) $_4$); ii, KOH/MeOH; iii, 5% AcOH; iv, Et_3 0 t BF $_4$ (R'=Et); v, $NaBH_4$ /AcOH; vi, Hg(OAc) $_2$ or Potier's modified Polonovski's reaction on N-oxide; vii, HCO_2 H/HCONH $_2$, reflux.

When applied in the normal series to (19 S)-oxindoles of the "B"-ty-pe: 4a (mitraphylline), 4b and 4c (hemisynthetic from cabucine 1b and from tetraphylline 1c (1b)) and of the "A"-type: dimethoxy-10,11 isomitraphylline 4d this method (4) afforded the corresponding seco-oxindoles 5a, b, c, d in approximatively 90 % yields. When applied to 7-chloro indolenines 2b and 2c, respectively derived from 1b and 1c, the same reductive method afforded 5b and 5c in approximatively 75 % yields (5).

Seco-oxindoles 5a, b, c, d could not be crystallised ⁽⁶⁾. Their molecular weights (M.S.) and spectral data are in complete agreement with the depicted structures. The main feature in their mass spectra is a typical m/e 224 peak (base peak) arising from the $C_{(5)}$ - $C_{(6)}$ bond breakage.

TABLE 2

References and Footnotes

- Preceding publications in this series: a,I.,F.Titeux, L.Le Men-Olivier and J.Le Men, Phytochemistry, 1975,14,565; -b, II., F.Titeux, L.Le Men-Olivier and J.Le Men, Bull.Soc.chim.France, 1976,1473.
- 2. -a, N.Finch and W.I.Taylor, <u>J.amer.chem.Soc.</u>,1962,84, 1318 and 3871; -b,J.Shavel and H.Zinnes, <u>J.amer.chem.Soc.</u>,1962,84,1320;-c,N.Finch, C.W.Gemenden,I.H.Hsu and W.I.Taylor, <u>J.amer.chem.Soc.</u>,1963,85,1520; -d,N.Finch,C.W.Gemenden,I.H.Hsu;A.Kerr,G.A.Sim and W.I.Taylor, <u>J.amer.chem.Soc.</u>,1965,87,2229.
- 3. -a, N.Aimi, E. Yamanaka, J. Endo, S. I. Sakai and J. Haginiwa, <u>Tetrahedron</u>
 <u>Letters</u>, 1972, 1081; -b, N. Aimi, E. Yamanaka, J. Endo, S. I. Sakai and J. Haginiwa, <u>Tetrahedron Letters</u>, 1973, 2015; -c, S. I. Sakai, <u>Heterocycles</u>, 1976, 131.
- 4. M.-J.Hoizey,L.Olivier,J.Lévy and J.Le Men, <u>Tetrahedron Letters</u>, 1971, 1011.
- 5. The remaining 25 % mainly consist of the corresponding yohimbines.
- Probably due to tautomerism between (7R)- and (7S)-2-oxo indolines, through 2-hydroxy indoles.

Received, 16th May, 1977