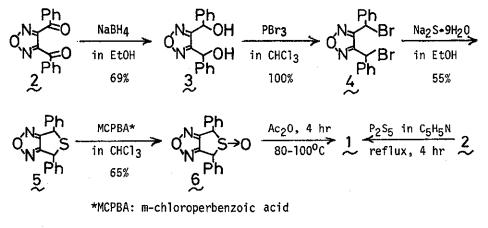

THE THIENO[3,4-c]-1,2,5-OXADIAZOLE SYSTEM, A NONCLASSICAL 10π-ELECTRON HETEROCYCLE

O<u>tohiko</u> T<u>suge</u>*, T<u>oshiaki</u> T<u>akata</u>, and M<u>ichihiko</u> N<u>oguchi</u> Research Institute of Industrial Science, Kyushu University 86, Hakozaki, Higashi-ku, Fukuoka 812, Japan

Diphenylthieno[3,4-c]-1,2,5-oxadiazole, a new nonclassical 10π-electron heterocycle, was prepared by two routes starting from dibenzoylfurazane. Cycloadditions of maleimides, dimethyl fumarate and maleate occurred across the thiocarbonyl ylide dipole, giving the corresponding adducts.


Tetraphenylthieno[3,4-c]thiophene, prepared in 1969, was the first example of an isolable nonclassical condensed thiophene.¹ Syntheses of several stable, nonclassical 10π -electron condensed thiophenes have since been reported in the literature. These compounds containing tetravalent sulfur are of considerable

practical and theoretical interest.² In this regard, we wish to report the preparation of diphenylthieno-[3,4-c]-1,2,5-oxadiazole (]), a new nonclassical 10π electron heterocycle, and its cycloaddition reactions.

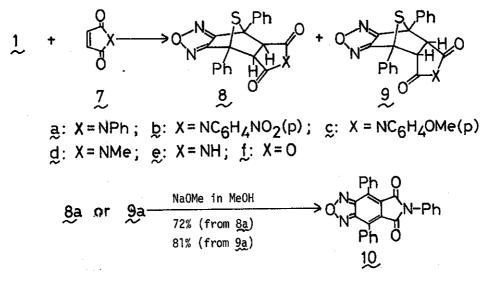
<u>Preparation of 1</u>. The heterocycle] was prepared by two routes starting from the readily available dibenzoylfurazane $(2)^3$ (Scheme 1). Borohydride reduction of 2 afforded an epimeric mixture of the corresponding diols 3, mp

94.5-96.5°C, which in turn was converted with phosphorus tribromide into the dibromides 4, pale yellow oil. Conversion of 4 with sodium sulfide into the cis sulfide 5, mp 122.5-123.5°C, followed by oxidation of 5 with m-chloroperbenzoic acid gave the corresponding sulfoxide 6, mp 178.5-179.5°C (ca. 24% overall yield from 2).⁴

Scheme 1

Dehydration of 6 in acetic anhydride afforded a 40% yield of 1, mp 161-165°C dec, as blue crystals. The heterocycle 1 (30% yield) could also be obtained in a single operation by the direct reaction of 2 with phosphorus pentasulfide in refluxing pyridine. Though nmr and uv spectra of 1 could not be measured due to its insolubility in ordinary solvents, its mass spectrum showed major peaks at m/e 278 (M^+ , 87%), 139 (M^{2+} , 9%), and 121 (PhCS⁺, 100%), reflecting the stability of 1 as was observed with other tetravalent sulfur compounds. Additional evidence in support of structure 1 comes from the formation of cycloadducts described below.

<u>Cycloaddition Reactions</u>. When a mixture of equimolar amounts of] and Nphenylmaleimide (7a) in benzene was refluxed under nitrogen for 12 hr, two 1:1 adducts, 8a and 9a, were obtained in 40 and 34% yields respectively.⁵ On


- 1174-

treatment with sodium methoxide in methanol, both &a and &a were readily converted into the same benzo[c]oxadiazole derivative 10 by loss of hydrogen sulfide. It is thus evident that <u>7a</u> adds across the thiocarbonyl ylide dipole of <u>1</u>. Such an addition is consistent with that observed previously in other tetravalent sulfur systems.²

<u>§a</u>: mp 214-216.5^oC dec, colorless prisms; ir (KBr) 1720 cm⁻¹ (C=0); nmr (DMSO-d₆) δ 4.68 (2H, s, \geq C<u>H</u>), 7.25-8.0 (15H, m); mass spectrum m/e (rel. intensity %) 451 (M⁺, 44), 417 (M⁺ - H₂S, 37), 278 (100), 121 (79).

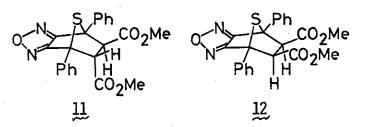
<u>9a</u>: mp 184-185.5^oC, colorless needles; ir (KBr) 1720 cm⁻¹ (C=O); nmr (DMSO-d₆) δ 5.41 (2H, s, \geq C<u>H</u>), 6.8-7.1 (2H, m), 7.4-7.95 (9H, m), 7.95-8.3 (4H, m); mass spectrum m/e (rel. intensity %) 451 (M⁺, 13), 417 (M⁺ - H₂S, 1), 278 (100), 121 (59).

10: mp 244-245°C, yellow needles; ir (KBr) 1720 cm⁻¹ (C=O); nmr (CDCl₃) δ 7.35-7.95 (m, ArH); mass spectrum m/e 417 (M⁺, base peak).

The major isomer $\underline{8a}$ was assigned the exo structure and the minor isomer $\underline{9a}$ was assigned the endo structure on the basis of nmr data. Thus, the protons α to the imide carbonyls of $\underline{8a}$ appear at higher field (δ 4.68) than the corresponding protons of $\underline{9a}$ (δ 5.41), because of the deshielding effect of the sulfur bridge. Analogous effects have been noted for other related exo-endo adducts pairs containing a sulfur bridge.⁶

Similarly, 1 afforded the corresponding exo adducts, <u>8b</u>-<u>8e</u>, and endo adducts, <u>9b</u>-<u>9e</u>, in the reaction with maleimides <u>7b</u>-<u>7e</u> under the same conditions. The results are summarized in Table 1. The ratio of exo adduct <u>8</u> to endo adduct <u>9</u> in each crude product was estimated by nmr spectroscopy, and the value was also given in Table 1. Though the exo adduct <u>8f</u> was only iso-

Adduct	Yield %	Мр., ^О С	Nmr, ^{a)} δ ppm ≥C <u>H</u>	exo/endo ^{b)}	
8a(exo)	40	214-216.5 dec.	4.68	8/5	
9a(endo)	34	184-185.5	5.41	•,•	
<u>8</u> b(exo)	31	207-208 dec.	4.6]	1/1	
9b(endo)	32	218-219.5	5.38	'/ '	
8 <u>ç</u> (exo)	43	218-219.5 dec.	4.53	8/5	
9c(endo)	26	158-159	5.30	0/0	
8d(exo)	37	210-211 dec.	4.43	0/0	
9d(endo)	38	195.5-196	5.20	2/3	
8e(exo)	38	204-205.5 dec.	4.35	2/1	
9e(endo)	25	206-208.5 dec.	5.17		
8 <u>f</u> (exo)	51	193-194 dec.	4.88		
9 <u>f</u>			5.56	11/1	


Tab	le	1
-----	----	---

a) Measured in DMSO-d₅.

b) Estimated by nmr spectroscopy using the methine protons signals.

lated from the reaction of 1 with maleic anhydride $(\underline{f}f)$, an estimation of nmr spectroscopy showed the formation of endo adduct $\underline{g}f$.

Next, we investigated the reaction of 1 with dimethyl fumarate and maleate. When a mixture of equimolar amounts of 1 and fumarate in benzene was refluxed under nitrogen for 8 hr, the corresponding 1:1 cycloadduct 11, mp 125-126°C, as colorless prisms was obtained in 15% yield, with 29% recovery of 1. A similar reaction of 1 with maleate afforded a 4% yield of exo cycloadduct 12, mp 198.5-199°C, as colorless needles; 84% of 1 was recovered. Thus it may be concluded that the cycloaddition reaction proceeds stereospecifically. Structural elucidation of 11 and 12 was accomplished on the basis of spectral data.

11: ir (KBr) 1740 cm⁻¹ (C=O); nmr (CDC1₃) δ 3.32, 3.49 (each 3H, s, 0CH₃), 3.77, 4.82 (each 1H, s, \geq CH), 7.3-8.15 (10H, m); mass spectrum m/e (rel. intensity %) 422 (M⁺, 49), 278 (100), 121 (93).

<u>12</u>: ir (KBr) 1740 cm⁻¹; nmr (DMSO-d₆) δ 3.30 (6H, s, 0C<u>H</u>₃), 4.55 (2H, s, \geq C<u>H</u>), 7.35-7.55 (10H, m); mass spectrum m/e (rel. intensity %) 422 (M⁺, 46), 278 (96), 121 (100).

However, the reaction of \mathbf{j} with fumarate or maleate for a long time gave a mixture of several products whose structures are not yet established.

Study on cycloaddition reactions using other olefins and acetylenes is now in progress.

REFERENCES AND NOTES

- 1. M. P. Cava and G. E. M. Husbands, J. Amer. Chem. Soc., 1969, 91, 3952.
- For a recent summary of work in this area see M. P. Cava and M. V. Lakshmikantham, <u>Acc. Chem. Res.</u>, 1975, <u>8</u>, 139.
- 3. A. Angeli, <u>Ber.</u>, 1893, <u>26</u>, 528.
- The structures of 3-6 were confirmed by elemental analyses and spectral data.
- 5. No interconversion between & and y a was observed in boiling xylene. However, & or y a reacted with 7 in refluxing xylene, giving the corresponding 1:1 adduct A (mp 277-279°C dec) or B (mp 185-187°C) respectively. The reaction of 1 with 7 in refluxing xylene afforded a mixture of & y a, A, and B, but the structures of A and B are not yet established.
- M. P. Cava, N. M. Pollack, O. A. Mamer, and M. J. Mitchell, <u>J. Org. Chem.</u>, 1971, <u>36</u>, 3932; M. P. Cava, N. M. Pollack, and G. A. Dieterle, <u>J. Amer.</u> <u>Chem. Soc.</u>, 1973, <u>95</u>, 2558; M. P. Cava, M. Behforonz, G. E. M. Husbands, and M. Srinivasan, <u>ibid.</u>, 1973, <u>95</u>, 2561.

33.1

16

Received, 13th June, 1977