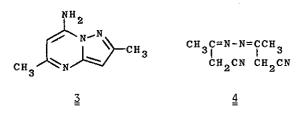

HETEROCYCLES, Vol. 6, Nos. 9, 10, 1977

REACTION OF HYDRAZINE WITH β-AMINOCROTONONITRILE: SYNTHESIS OF 2,7-DIMETHYL-5-AMINOPYRAZOLO[1,5-a]PYRIMIDINE

<u>Alexander McKillop</u>^{*} and <u>Ryszard J</u>. <u>Kobylecki</u> <u>School of Chemical Sciences</u>, <u>University of East Anglia</u>, <u>Norwich, NR4 7TJ</u>, England

Condensation of hydrazine with β -aminocrotononitrile at room temperature gives β -(3-methyl-5-amino-1-pyrazolyl)crotononitrile, thermal rearrangement of which produces 2,7-dimethyl-5aminopyrazolo [1,5-<u>a</u>]pyrimidine in excellent yield. Consequently, the various reactions of hydrazine with β -aminocrotononitrile can readily be rationalised.

The reactions of hydrazine with β -aminocrotononitrile were first studied in 1895 by Meyer,¹ who reported that three isomeric products of molecular formula $C_8 H_{10} N_4$ could be obtained, depending on the reaction conditions employed. Structures <u>1</u> and <u>2</u> were



1

assigned to two of these products and 1 was later shown to be

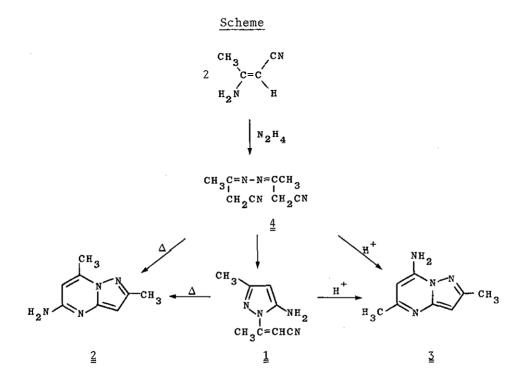
2

correct by Kurtz <u>et al</u>..² No structure was postulated by Meyer for the third, somewhat unstable isomer, as attempts to repeat the preparation failed and resulted only in the formation of <u>1</u>. About ten years ago Takamizawa <u>et al</u>. claimed^{3,4} that structure <u>2</u> was incorrect, and that the product obtained from acid catalysed cyclisation of <u>1</u> was in fact the isomeric compound <u>3</u>. Recently,

Alcade <u>et al</u>. have published details of a comprehensive and sophisticated spectroscopic study of all three products described by Meyer; their results confirm that structure $\underline{1}$ is correct, show that structure $\underline{3}$ is almost certainly correct, and prove that the third isomer reported by Meyer is the azine $\underline{4}$.⁵

The reactions of hydrazine with β -aminocrotononitrile were investigated in detail in these laboratories some years ago,⁶ and we now describe briefly one aspect of that work. Using a spectroscopic approach similar to that of Alcade <u>et al.</u>, structures <u>l</u> and <u>4</u> for two of the Meyer products were readily confirmed. In our opinion, however, absolute distinction between the two isomers <u>2</u> and <u>3</u> on purely spectroscopic grounds could not be made entirely unambiguously. Hence both compounds were synthesised as follows. Reaction of hydrazine with β -aminocrotononitrile at room temperature gave the azine <u>4</u> as a colourless, crystalline solid,

HETEROCYCLES, Vol. 6, Nos. 9, 10, 1977


mp 99-102°, which cyclised smoothly to $\underline{3}$, mp 201-202°, when heated under reflux in either acetic or aqueous hydrochloric acid. The properties of $\underline{3}$ and $\underline{4}$ thus prepared are fully consistent with those reported by Alcade <u>et al</u>.. When $\underline{4}$ was heated neat in a test tube over a low flame, however, it melted at about 100° and, when heating was continued, a vigorous exothermic reaction set in at about 250°; the product of this reaction, formed in excellent yield, was the hitherto unknown fourth isomer of molecular formula $C_8H_{10}N_4$, the pyrazolo[1,5-a]pyrimidine 2, mp 185-186°. Thermal rearrangement of 1 similarly gave 2 in excellent yield.

As anticipated, the spectral properties (ir, uv, nmr, mass) of $\underline{2}$ and $\underline{3}$ are almost identical, although as predicted by Alcade <u>et al</u>. there is indeed a four bond coupling of 1.0 Hz in the nmr spectrum of $\underline{2}$ between the 6-proton and the 7-methyl group, but no discernable coupling between the 5-methyl group and the 6-proton in $\underline{3}$. Unambiguous proof that the thermal rearrangement of $\underline{1}$ and $\underline{4}$ gives $\underline{2}$ was obtained by single crystal X-ray analysis of the 5-N-acetyl derivative of $\underline{2}$, the details of which have been published elsewhere.⁷

The above results therefore not only completely confirm the structural assignments made by Alcade <u>et al</u>. for compounds $\underline{1}$, $\underline{3}$ and $\underline{4}$ but clarify the long-confused situation with respect to the nature of the reactions of hydrazine with β -aminocrotononitrile and the products thus formed; the various transformations are summarised in the Scheme. Moreover, formation of $\underline{2}$ and $\underline{3}$ under the conditions described above is interesting in mechanistic terms. Compound $\underline{2}$ can be regarded as the "expected" product of

-1357-

cyclisation of $\underline{1}$, yet is formed only by thermal cyclisation of either $\underline{1}$ or $\underline{4}$. The "unexpected" isomer $\underline{3}$, on the other hand, is obtained from $\underline{1}$ or $\underline{4}$ by treatment with hot acid and is presumably formed via a ring-opening / ring reclosure sequence.

Experimental

 $2, \underline{7}-\underline{\text{Dimethyl}}-\underline{5}-\underline{\text{aminopyrazolo}}[\underline{1},\underline{5}-\underline{a}]$ pyrimidine 2. Hydrazine hydrate (5.0 g, 0.1 mol) was added to a solution of β -aminocrotononitrile (8.2 g, 0.1 mol) in acetic acid (10 ml) and the mixture shaken. A colourless, voluminous solid precipitated almost immediately; the mixture was allowed to stand at room temperature for 5 min, after which the solid was collected by filtration, washed with cold water (2 x 20 ml), dried by suction, and recrystallised from a chloroform-petroleum ether (bp 40-60°) mixture. This gave 6.5 g (67%) of the pure azine $\underline{4}$ as colourless crystals, mp 99-102°. Anal. calcd for C₈H₁₀N₄: C, 59.24; H, 6.21; N, 34.54. Found: C, 59.48; H, 6.17; N, 34.81.

The azine thus prepared (4 g) was melted in a test tube over a small flame; heating was continued to about 250° , when a vigorous exothermic reaction commenced. The tube was removed from the heat and the contents allowed to boil for a few minutes. The liquid crystallised on cooling, and the solid was purified by vacuum sublimation $(130^{\circ}/0.1 \text{ mm})$ followed by recrystallisation from a chloroform-petroleum ether (bp $60-80^{\circ}$) mixture. This gave 3.5 g (87%) of pure 2 as very pale yellow needles, mp $185-186^{\circ}$. Anal. calcd for $C_8H_{10}N_4$: C, 59.24; H, 6.21; N, 34.54. Found: C, 59.02; H, 6.24; N, 34.51.

Ir (Nujol): 3340 and 3140 (N-H), 1660 cm⁻¹ (C=N); nmr (CDCl₃): $\delta 2.42$ (d, 3H, ${}^{4}J_{2,3} = 0.5$ Hz, 2-CH₃), 2.60 (d, 3H, ${}^{4}J_{6,7} = 1.0$ Hz, 7-CH₃) 5.85 (d, 1H, ${}^{4}J_{6,7} = 1.0$ Hz, 6-H), 5.92 (d, 1H, ${}^{4}J_{2,3} = 0.5$ Hz, 3-H); uv (C₂H₅OH): λ_{max} 245, 275, 285 308 (sh) nm (log ϵ 4.57, 3.39, 3.36, 3.05).

Acknowledgement: One of us (R. J. K.) acknowledges receipt of a CAPS Award.

References

- 1 E. von Meyer, J. prakt. Chem., 52, 81 (1895).
- 2 P. Kurtz, H. Gold, and H. Disselnkötter, <u>Annalen</u>, <u>624</u>, 1 (1959).
- 3 A. Takamizawa, Y. Hamashima, S. Hayashi, and R. Kido, <u>Yakugaku</u> <u>Zasshi</u>, <u>§3</u>, 745 (1963).
- 4 Japanese patent 18755-6; Chem. Abstr., 64, 12696 (1966).
- 5 E. Alcade, J. de Mendoza, J. M. Garcia-Marquina, C. Almera, and
 J. Elguero, J. <u>Heterocyclic Chem.</u>, <u>11</u>, 423 (1974).
- 6 R. J. Kobylecki, Ph. D. Dissertation, University of East Anglia, 1973.
- 7 R. E. Ballard, E. K. Norris, and G. M. Sheldrick, <u>Acta Cryst</u>., <u>B</u> <u>31</u>, 295 (1975).

Received, 20th June, 1977