A FACILE SYNTHESIS OF SUBSTITUTED PYRIMIDINES BY RING TRANSFORMATION OF 1,3-OXAZIN-4-ONES

Yutaka Yamamoto^{*} and Yutaka Azuma Tohoku College of Pharmacy, 4-4-1 Komatsushima, Sendai 983, Japan

Treatment of 6-methyl-2-phenyl-4H-1,3-oxazin-4-one (1) and 2-benzyl-2-ethoxy-6-methyl-3,4-dihydro-2H-1,3-oxazin-4-one (2) with thicamides led to conversion into the corresponding 2,6-disubstituted 5-acetyl-4-hydroxy-pyrimidines $3a \sim e$ and 4a, b, respectively.

The ring transformations of 1,3-oxazine derivatives into various heterocycles such as pyridines,¹ pyrimidines^{2,3} and pyrindines⁴ were already reported. In this communication we wish to report a facile method for synthesis of substituted pyrimidines through the ring transformation of 1,3-oxazin-4-one derivatives.

The 1,3-oxazin-4-one derivatives were found smoothly to react with thioamides in the presence of sodium hydride to give substituted pyrimidines. For example, to a mixture of sodium hydride⁵ (11 mmole) and phenylthioacetamide (10 mmole) in dimethylformamide (DMF) was added dropwise with stirring a solution of 6-methyl-2-phenyl-4H-1,3-oxazin-4-one (1)² (10 mmole) in DMF at room temperature under

-1817 -

nitrogen atmosphere. The reaction mixture was stirred for an additional 18 hr, neutralized with 10% hydrochloric acid, and then allowed to cool in an ice-salt mixture. The precipitated product was collected by filtration. An additional quantity of the product was obtained by concentration of the filtrate. Recrystallization of the combined product from 95% ethanol gave 5-acetyl-6-benzyl-4-hydroxy-2-phenylpyrimidine ($\underline{3a}$), mp 215° (decomp.), as colorless needles in 85% yield. The structure of $\underline{3a}$ was confirmed by the spectral and analytical evidences (shown in Table 1). In a similar experiment, various 6-substituted 5-acetyl-4-hydroxy-2-phenylpyrimidines ($\underline{3b \sim e}$) were obtained by the reaction of $\underline{1}$ with the corresponding thioamides as shown in Scheme 1. Spectral and experimental data were summarized in Table 1.

In addition, the 2,3-dihydro-1,3-oxazin-4-one 2^2 also reacted with thioamides to afford the corresponding 5-acetyl-4-hydroxypyrimidines (4).

It is of interest to note that use of carboxamides such as benzamide, acetamide, propionamide and phenylacetamide

Table 1. Preparation of 6-Substituted 5-Acetyl-4-hydroxy-2-phenylpyrimidines (<u>3a~e</u>) and 5-Acetyl-2-benzyl-4-hydroxypyrimidines (<u>4a,b</u>)

Product	R	Yield (%)	mp(°C)	Molecular _a formula (Mol. Wt.)) 1 _{H-NMR} b) § (ppm)	IR (KBr)
<u>3a</u>	с ₆ н ₅ сн ₂	85	215	C ₁₉ H ₁₆ N ₂ O ₂ (304.4)	2.56(3H,s), 4.18(2H,s), 7.2-8.5 (10 H, m), 13.5(1H,b)	1680 (sh.), 1660
<u>3b</u>	CH3	85	267 (decomp.)	^C 13 ^H 12 ^N 2 ^O 2 (228.3)	2.62(3H,s), 2.65(3H,s), 7.65-8.25 (5H,m)	1690, 1640
<u>3c</u>	^с 6 ^н 5	52,6	297 (decomp.)	^C 18 ^H 14 ^N 2 ^O 2 (290.3)	2.39(3H,s), 7.6-8.3 (10 H, m)	1690, 1625
<u>3d</u>	C ₂ H ₅	52	215	^C 14 ^H 14 ^N 2 ^O 2 (242.3)	1.19(3H,t, J=7 Hz), 2.58(3H,s) 2.98(2H,q, J=7 Hz), 7.6-8.2(5H,m)	1690, 1640
<u>3e</u> 1	-сн ₃ ос ₆ н ₄	65	253 (decomp.)	^C 19 ^H 16 ^N 2 ^O 3 (320.4)	2.42(3H,s), 3.90(3H,s), 7.0-8.3(9H,m)	1695, 1625
<u>4a</u>	CH3	28	188	^C 14 ^H 14 ^N 2 ^O 2 (242.3)	2.44(3H,s), 2.59(3H,s), 3.98(2H,s), 7.3-7.6(5H,m), 13.1(1H, b)	1690, 1660
<u>4b</u> 1	-СH ₃ 0С ₆ H ₄	50	197 (decomp.)	^C 20 ^H 18 ^N 2 ^O 3 (334,4)	2.39(3H,s), 3.86(3H,s), 4.06(2H,s), 7.0-7.8(9H,m), 13.1(1H, b)	1695, 1640

a) All products gave satisfactory microanalysis (C $\pm 0.13\%,$ H $\pm 0.27\%,$ N $\pm 0.23\%).$

b) Spectra were recorded on a Hitachi R-24B with TMS as internal standard; the solvents used: CDCl₃ (<u>3a</u>, <u>4a</u>, <u>4b</u>) or CDCl₃-CF₃CO₂H (9 : 1) (<u>3b</u>, <u>3c</u>, <u>3d</u>, <u>3e</u>).

-1819-

instead of thioamides resulted in far less yields (from 2% to 12%) of the corresponding pyrimidines.

A probable route of the ring transformation of the 1,3-oxazin-4-ones into the pyrimidines can be posturated as shown in Scheme 2.

<u> $3a \sim e$ </u> : Ar= C_6H_5 , <u> $4a \cdot b$ </u> : Ar= $C_6H_5CH_2$

Scheme 2

REFERENCES AND NOTES

- 1. T. Kato, Y. Yamamoto, and M. Kondo, <u>Chem. Pharm. Bull</u>., 1975, 23, 1873.
- 2. T. Kato and Y. Yamamoto, <u>Chem. Pharm. Bull.</u>, 1967, 15, 1334.
- T. Kato, H. Yamanaka, Y. Yamamoto, and M. Kondo, <u>J. Pharm. Soc.</u> Japan, 1972, 92, 886.
- 4. T. Kato, Y. Yamamoto, and M. Kondo, <u>Heterocycles</u>, 1975, 3, 293.
- 5. A 50% dispersion of sodium hydride in mineral oil was washed several times by decantation with purified tetrahydrofuran.

Received, 20th July, 1977