PROTON MAGNETIC RESONANCE SPECTRA OF SOME ALKYLPYRIDINE AND ALKYLPYRAZINE N-OXÍDES

Akihiro Ohta^{*}, Yasuo Akita, and Chiseko Takagai

Tokyo College of Pharmacy, Horinouchi, Hachioji, Tokyo 192-03, Japan

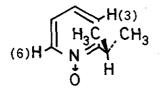
In the PMR spectra of some 2-alkylpyridine l-oxides and 2,5-dialkylpyrazine l-oxides, except α -picoline l-oxide and 2,5-dimethylpyrazine l-oxide, the signals of the α -protons of the side chain at C-2 appeared in a lower field than those of the parent amines. It is concluded that this shift to the lower field is caused by the anisotropic effect of the N-O group.

It is already well known¹ that signals of the methyl protons and H-6 of α -picoline 1-oxide appear in a higher field than those of the amine due to the electronic effect of the N-O group. In the course of an investigation on alkylpyrazines, we observed that N-oxidation of 2,5-diisopropylpyrazine shifts the methine protons to a lower field than where those of the original resonate. This fact was contrary to our expectation. Therefore, in an effort to clarify the effect of the N-O group on the 2-alkyl group, PMR spectra of some 2-alkylpyridine and 2,5-dialkylpyrazine N-oxides were compared with those of the parent amines. Its results are briefly presented in this paper.²

In Table 1, difference in chemical shifts of H-6 and α -protons of the 2-alkyl group between some 2-alkylpyridine 1-oxides³ and their parent amines is listed. The signals of H-6 in pyridine 1-oxides appeared in a higher field than those of the parent amines by about 0.25 ppm in all cases. This phenomenon may be due to the electron-donating effect of the N-0 group.

Table 1. PAR Spectra of 2-Substituted Pyridines and their N-Oxides

	a-protons of the side chain			н-6			
	parent amines § ppm(a)	N-oxides 5 ppm(b)	a-b*	parent amines \$ppm(a)	N-oxides 5 ppm(b)	a-b*	
Н				8.56	8.24	+0.32	
CH3	2.56	2,52	+0.04 .	8.50	8,28	+0,22	
CoH5	2.82	2.96	-0.14	8.50	8.24	+0.26	
n-C3H7	2.76	ê.92	-0.16	8.52	8.30	+0.22	
iso-C ₃ H7	3.08	3.80	-0.72	8.52	8,26	+0.26	
iso-C4H3	2.64	2.80	-0,16	8,50	8,22	+0.28	


* + denotes shift to a higher field and - to a lower field.

On the other hand, α -protons of the side chain at C-2 behaved in various ways. Although the signal of the methyl protons of α -picoline l-oxide appeared in a slightly higher field than that of α -picoline, methylene and methine protons of other pyridine l-oxides examined resonated in a lower field than those of the parent amines. As shown in Table 1, the difference in chemical shifts of methine protons between 2-isopropylpyridine and its

-1882 -

Fig. 1

1-oxide was the largest (0.72 ppm) among the observed values. This shift to the lower field might be attributed to the anisotropic effect of the N-O group.^{4,5} With an increase in size of the alkyl group, the free rotation of the bond between 0-2 and α -carbon of the side chain will be ristricted. As shown in Fig. 1, H-3 may bisect the angle of CH₃-C-CH₃ of the isopropyl group, and consequently the methine proton will be under the influence of the N-O group. If the anisotropic effect the N-O group is similar to that of a carbonyl group,⁴ it is reasonable to assume that the methine proton of 2-isopropylpyridine 1-oxide might appear in a relatively low field by this effect.

PMR spectra of 2,5-dialkylpyrazines and their N-oxides⁶ were also examined and its results are shown in Table 2. The two ring-protons of 2,5-dialkylpyrazine l-oxide resonated naturally at different chemical shifts. The signal, which appeared at the higher field, might be ascribed to H-6, because this signal disappeared more rapidly by the deuterium exchange experiment,⁷ in the presence of sodium deuteroxide in heavy water.⁸

The α -protons of the side chains in 2,5-dialkylpyrazine loxides behaved interestingly, similar to 2-alkylpyridine l-oxides. In the PAR spectrum of 2,5-dimethylpyrazine l-oxide, two singlets were observed. The one observed in a higher field disappeared more rapidly by deuteration and is therefore due to the methyl

-1883 -

protons on C-2.

	α -protons of the side chain			н-6			
	parent amines § ppm(a)	N-oxides 6 ppm(b)	a-b*	parent amines 5 ppm(a)	N-oxides ppm(b)	a-b*	
H	· ·		-	8,56	8.08	+0.48	
СНз	2,52	2.42	+0.1	8.32	8.04	+0.26	
C2H5	2,82	2,88	-0.06	8.34	8.02	+0.32	
n-C ₃ H7	2.76	2.84	-0.08	8,32	8.04	+0.28	
iso-C ₃ H7	3,08	3.60	-0.52	8,36	8.00	+0.36	
iso-C4H9	2,64	2,72	-0.08	8.34	7,98	+0.36	

Table 2. PMR Spectra of 2,4-Disubstituted Pyrazine 1-Oxides

* + denotes shift to a higher field and - to a lower field.

Contrary to the case of 2,5-dimethylpyrazine l-cxide, the α methylene and methine protons of the side chain at C-2 in other dialkylpyrazine l-oxides resonated in a lower field than the ones of the side chain at C-5. This fact was confirmed by the deuteration experiment; i.e., the signals which appeared in a lower field disappeared faster except in 2,5-diisopropylpyrazine loxide, in which the signal appearing in a higher field disappeared conversely faster than the other by the deuteration reaction. Because the methine proton of the isopropyl group at C-2 is surrounded by two methyl groups and oxygen of the N-O group, the proton might be hardly pulled out by the OD anion.

In all of the 1,4-dioxides, the singlets owing to the ring protons appeared in a higher field than those of the parent amines, while α -protons of the side chains at C-2 appeared variously. On the basis of these data, it seems reasonable to assume that anisotropy of the N-O group is predominantly effective on the chemical shift of the methine and methylene protons in 2,5-diisopropyl-, diethyl-, and diisobutyl-pyrazine l-oxides, and that the electrondonating effect is predominant on the chemical shifts of the methyl protons in 2,5-dimethylpyrazine l,4-dioxides.

Table 3. PMR Spectra of 2,5-Dialkylpyrazine 1,4-Dioxides

Alkyl groups	α -protons of the side chain			Н-6		
	parent amines J ppm(a)	N-oxides J ppm(b)	a-b*	parent amines \$ ppm(a	N-oxides & ppm(b)	a-b*
CH3	2,52	2.40	+0.12	8.32	8,06	+0.26
C ₂ H ₅	2.82	2,86	-0.04	8.34	8,04	+0.30
n-C3H7	2,76	2.76	0	8.32	8.04	+0.28
iso-C ₃ H7	3.08	3.54	-0.46	8,36	8,00	+0.36
iso-C4H9	2,64	2,68	-0.04	8,34	8.04	+0.30

* + denotes shift to a higher field and - to a lower field.

In view of the above facts the most reasonable conclusion drawn from available data is that the N-O group of pyridine and pyrazine N-oxides has the electron-donating and anisotropic effects on H-6 and α -protons of the side chain at C-2. These two effects may be opposed to each other; i.e., the electron-donating effect shifts the signals of H-6 and α -protons of the side chains at C-2 to a higher field, whereas the anisotopic effect makes alkyl protons resonate in a lower field, compared with those of the parent amines. In order to clarify this anisotropy, it would be necessary to

-1885-

estimate the bond length of the N-O, its neighboring C-C, and C-H. Because some of the pyrazine l-oxides and l,4-dioxides are conveniently solid, this point will be examined using the X-ray diffraction method.

ACKNOWLEDGEMENT We are grateful to Dr. Yoji Arata, Tokyo University, for valuable discussions.

REFERENCES

T. J. Batterhan, ''NMR Spectra of Simple Heterocycles,''
John Wiley & Sons, Inc., New York, 1973, pp. 8 and 118.
PMR spectra were taken in deuterated chloroform with a JEOL
JNM-PS-100 spectrometer, using tetramethylsilane as an internal standard.

3 2-Methyl-, 2-ethyl-, and 2-propyl-pyridines were obtained commercially. 2-Isopropyl- and 2-isobutyl-pyridines were prepared by the reported method (C. Osuch and R. Levine, <u>J</u>. <u>Am. Chem. Soc.</u>, 1956, 78, 1723). 2-Alkylpyridine l-oxides were obtained by oxidation of the corresponding pyridines with peracetic or permaleic acids.

4 K. Tori, M. Ogata, and H. Kano, <u>Chem. Pharm. Bull.(Tokyo)</u>, 1963, 11, 681.

5 P. Hamm and W. von Philipsborn, <u>Helv. Chim. Acta</u>, 1971, <u>54</u>, 2362.

6 2,5-Dialkylpyrazines were obtained from chloro-2,5-dialkylpyrazines, which were prepared by treatment of the corresponding diketopiperazines with phosphoryl chloride, through hydrogenation over palladium-carbon as a catalyst. Their N-oxides were prepared

-1886-

by their oxidation with peracetic or permaleic acids.

7 A. F. Thomas, ''Deuterium Labeling in Organic Chemistry,'' Appleton-Century Crofts, New York, 1971, p. 64.

8 2,5-Dialkylpyrazine l-oxides were heated in a sealed tube at 100-170° in the presence of sodium deuteroxide. The H-D exchange-rates measured will be reported at a later date.

Received, 27th June, 1977