A NEW SYNTHESIS OF 6-HYDROXYPTERIDINE DERIVATIVES

Keitaro Senga, Kayoko Shimizu, and Sadao Nishigaki
Pharmaceutical Institute, School of Medicine, Keio
University, 35, Shinanomachi, Shinjuku-ku, Tokyo 160,
Japan

Treatment of 6-amino-1,3-dimethyl-5-nitrosouracil with phenacylpyridinium halides in pyridine containing aqueous sodium hydroxide gave the corresponding 7-aryl-6-hydroxy-1,3-dimethyllumazines.

We wish to report a new synthetic route to 6-hydroxypteridine derivatives (<u>i.e.</u>, 7-aryl-6-hydroxy-1,3-dimethyllumazines; IIIa-g) by the reaction of 6-amino-1,3-dimethyl-5-nitrosouracil (I) with phenacylpyridinium halides (IIa-g) in pyridine containing aqueous sodium hydroxide.

Refluxing (I) (0.001 mol) with phenacylpyridinium bromide (IIa) (0.001 mol) in pyridine (3 ml) containing $1\underline{N}$ sodium hydroxide (1 ml) for 1 hr afforded a good yield of 6-hydroxy-1,3-dimethyl-7-phenyllumazine (IIIa), which was isolated by evaporation of the reaction mixture and addition of ethanol. The structure of (IIIa) was confirmed by its conversion to the known 1,3-dimethyl-7-phenyllumazine (V) 1,2 via 6-chloro-1,3-dimethyl-7-phenyllumazine (IV). 3

This reaction was equally applicable to other phenacylpyridinium halides (IIb-g) to give the corresponding 7-aryl-6-hydroxy-1,3-dimethyllumazines (IIIb-g) (Scheme I) (Table).

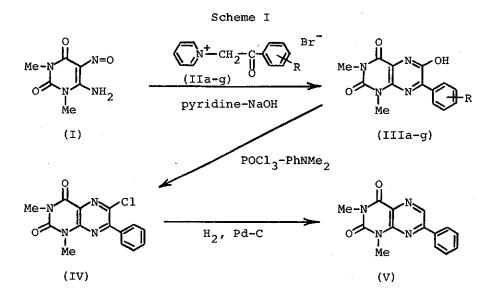


Table Formation of 7-Aryl-6-hydroxy-1,3-dimethyllumazines (III)

Phenacyl- pyridinium halide	R	Product ^{a)}	Mp(^O C)	Yield(%)
IIa	Н	IIIa	>300	71
IIb	4-Br	IIIb	>300	68
IIc	4-C1	IIIc	>300	55
IIđ	4-Me	IIIđ	291-292	64
IIe	4-OMe	IIIe	299.5-300	68
IIf	2,5-OMe ₂	IIIf	261-262	67
IIg	4-Ph	IIIg	284	69

a) All products were recrystallized from DMF.

As depicted in the Scheme II, this new 6-hydroxypteridine synthesis probably involves the initial formation of the pyrimidine nitrone, followed by nucleophilic addition of water, 5 and subsequent cyclization and aromatization by the elimination of water. 6

$$(I) + (IIa-g) \xrightarrow{Me-N} \xrightarrow{N} \xrightarrow{NH_2} \xrightarrow{OH} \xrightarrow{NH_2} \xrightarrow{OH} \xrightarrow{NH_2} \xrightarrow{OH} \xrightarrow{NH_2} \xrightarrow{OH} \xrightarrow{NH_2} \xrightarrow{OH} \xrightarrow{NH_2} \xrightarrow{OH} \xrightarrow{NH_2} \xrightarrow{NH_2} \xrightarrow{OH} \xrightarrow{NH_2} \xrightarrow{NH_2}$$

REFERENCES AND NOTES

- 1 K. Senga, H. Kanazawa, and S. Nishigaki, J.C.S. Chem. Comm., 1976, 588.
- 2 In the reaction of (I) with (IIa), a trace amount of (V) was also obtained from the filtrate which removed (IIIa).
- 3 Refluxing (IIIa) (0.002 mol) in phosphorus oxychloride (4 ml) containing N,N-dimethylaniline (0.004 mol) for 4.5 hr gave (IV) (94%, mp 203-205° from ethanol), which was then converted to (V) (47%, mp >300° from ethanol) by the catalytic dechlorination

- over palladium-carbon in ethanol.
- 4 Satisfactory analytical and spectral data were obtained for all products.
- 5 Refluxing (I) (0.001 mol) with (IIa) (0.001 mol) in pyridine (3 ml) containing water (1 ml) for 1 hr provided (IIIa) in 46% yield.

Received, 26th July, 1977