A NOVEL SYNTHESIS OF v-TRIAZOLO[4,5-d]PYRIMIDINES

Keitaro Senga, * Misuzu Ichiba, and Sadao Nishigaki

Pharmaceutical Institute, School of Medicine, Keio

University, 35, Shinanomachi, Shinjuku-ku, Tokyo 160,

Japan

Treatment of 6-azido-1,3-dimethyluracil with alkyl halides in dimethylformamide containing potassium carbonate gave the corresponding 1-alkyl-4,6-dimethyl-v-triazolo[4,5-d]-pyrimidine-5,7(4H,6H)-diones via 4,6-dimethyl-v-triazolo-[4,5-d]pyrimidine-5,7(4H,6H)-dione.

In recent years considerable interest has been devoted on the derivatives of \underline{v} -triazolo[4,5- \underline{d}]pyrimidine as potential purine antagonists, and several synthetic routes to this ring system have been developed. We now report a novel synthesis of 1-alkyl-4,6-dimethyl- \underline{v} -triazolo[4,5- \underline{d}]pyrimidine-5,7(4H,6H)-diones (IIa-f) from 6-azido-1,3-dimethyluracil (I).

Refluxing (I) (0.001 mol) with alkyl halides (0.001 mol) in dimethylformamide (3 ml) containing potassium carbonate (0.001 mol) for 1 hr afforded the corresponding l-alkyl-4,6-dimethyl-v-triazolo-[4,5-d]pyrimidine-5,7(4H,6H)-diones (IIa-f). An intermediate of these reactions is 4,6-dimethyl-v-triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (IIg), which was obtained by treatment of (I) with di-

methylformamide containing potassium carbonate under the same conditions 5,6 (Table). The formation of (IIg) involves the intramolecular cyclization of a vinyl azide 7 to a triazole. Numerous examples have been reported on the cyclization of imidoyl azides to tetrazoles and of thiocarbonyl azides to thiatriazoles, 8 however, only one paper has hitherto been recorded on the conversion of a vinyl azide to a triazole. 9

Table Formation of v-Triazolo[4,5-d]pyrimidine Derivatives

Alkyl halide	Product	R	$\lambda_{\text{max}}^{\text{H}_2^O} \text{nm}(\log \xi)$	Mp(OC))(Recrystn. solvent)	Yield(%)
MeI	IIa	Me	230sh(3.64)	202-203 ^C	77
			280(3.94) ^a	(EtOH)	
EtI	IIb	Et	230sh(3.71)	83-84	56
			277(4.07)	(EtOH)	
<u>n</u> -PrI	IIc	<u>n</u> -Pr	230sh(3.63)	78-79	26
			278(4.49)	(EtOH)	
EtOOCCH ₂ Cl	IId	EtOOCCH ₂	235sh(3.67)	164-166 ^đ	21
		2	280(4.07)	(MeOH)	
CH ₂ =CH-CH ₂ Br	lle	CH ₂ =CH-CH ₂	306(3.80)	183-184	24
		~ 2		(MeOH-H ₂ O)	
Ph-CH ₂ C1	IIf	Ph-CH ₂	240sh(3.74)	119-120	38
		2	280(4.10)	(EtOH)	
None	IIg	н	230sh(3.83)	259-260 ^e	30
			268(3.98)	(H ₂ O)	

a) Lit. 4 230sh(3.56), 280(3.74). b) Lit. 4 230sh(3.62), 269(3.93).

c) Lit. 4 mp 223-224°. d) Lit. mp 157-159°: D.S. Bariana, <u>J. Med. Chem.</u>, 1971, 14, 543. e) Lit. mp 260°.

REFERENCES AND NOTES

- 1 For example, the antitumor activity of v-triazolo[4,5-d]pyrimidines has been reviewed by R.K. Robins: J. Med. Chem., 1964, 7, 186.
- 2 a) R.K. Robins, "Heterocyclic Compounds," Vol. 8, ed. R.C. Elderfield, John Wiley and Sons, New York, 1967, p. 162; b) A. Albert, J. Chem. Soc. (C), 1969, 152; c) H.U. Blank, I. Wempen, and J.J. Fox, J. Org. Chem., 1970, 35, 1131; d) Y. Maki, M. Suzuki, K. Izuta, and S. Iwai, Chem. Pharm. Bull. (Tokyo), 1974, 22, 1269; e) K. Senga, Y. Kanamori, S. Nishigaki, and F. Yoneda, Chem. Pharm. Bull. (Tokyo), 1976, 24, 1917.
- 3 W. Pfleiderer and K.-H. Schündehütte, Liebigs Ann. Chem., 1958, 612, 158.
- 4 G. Nübel and W. Pfleiderer, Chem. Ber., 1965, 98, 1060.
- 5 Compounds (IIa-g) were isolated by evaporation of the reaction mixtures, followed by addition of 5% hydrochloric acid, and subsequent extraction with chloroform. Satisfactory analytical and spectral data were obtained for all products.
- 6 Compound (IIg) could not be obtained by refluxing (I) with dimethylformamide alone for 1 hr.
- 7 The starting material (I) possesses a vinyl azide structure.
- 8 W. Lwowski, "The Chemistry of the Azido Group," ed. S. Patai, Wiley-Interscience, New York, 1971, p. 503.
- 9 J.S. Meek and J.S. Fowler, <u>J. Am. Chem. Soc</u>., 1967, 89, 1967.

Received, 15th August, 1977