2-SUBSTITUTED-AMINO-5-PHENYL-1,3,4-OXADIAZOLES +

Keith L. Turner and Stephen Turner^{*} Reckitt & Colman Pharmaceutical Division, Dansom Lane, Hull, HU8 7DS, U.K.

The sodium salt of 2-acetamido-5-phenyl-1,3,4-oxadiazole can be alkylated using activated bromides. Alkylation by an unactivated halide takes place intramolecularly. The N-substituted compounds and derivatives thus prepared were essentially inactive in a screening system for CNS activity.

The amino group of the sedative and muscle relaxant, ¹ 2-amino-5-phenyl-1,3,4-oxadiazole (I, $R^1 = R^2 = H$), is only a weakly reactive centre in comparison with that of a normal aromatic amine. It may however be acylated ² and Gehlen has shown ³ that the 2-acetamido compound (I, $R^1 = H$, $R^2 = Ac$) forms a sodium salt which can be alkylated with dimethyl

or diethyl sulphate; the reaction with simple alkyl halides, however, was very slow.

[†] Dedicated to Professor R.B. Woodward on the occasion of his sixtieth birthday.

We have now shown that the sodium salt formed from the amide $(I, R^{1} = H, R^{2} = Ac)$ with one equivalent of NaOEt in EtOH, will react readily with activated halides in situ . Thus ethyl bromo acetate yielded at reflux the glycine ester (I, $R^1 = H$, $R^2 = CH_pCOOEt$), 4^* m. 123-6° (52%), cleavage of the N-acetyl group taking place during reaction. Subsequent base treatment gave the amino acid (I, $R^1 = H$, $R^2 = CH_2COOH$)*, m. 168-169° (66%). Reaction of the sodium salt of the amide (I, $R^1 = H$, $R^2 = Ac$) with phenacyl bromide at R.T. gave, without N-acetyl cleavage, the substance $(I, R^{1} = Ac, R^{2} = CH_{o}COPh)^{*}$, m. 124-5° (43%). Brief treatment of the compound with excess $NaBH_4$ in MeOH gave two products. The least soluble in CH_2Cl_2 was identified as the ethanolamine (I, $R^1 = H$, $R^2 = CH_2$ CHOH.Ph)*, m. 174-6° (19%), while the second more soluble product was identified by n.m.r. spectroscopy as the O-acetyl derivative $(I, R^{1} = H, R^{2} = CH_{0}.CHOAc. Ph)^{*}, m. 180-181^{0}$ (42%). An acyl migration had apparently taken place during the reduction, to leave the anionic centre stabilised on the nitrogen atom adjacent to the oxadiazole ring.

In confirmation of Gehlen's work ³, the sodium salt of the amide $(I, R^{1} = H, R^{2} = Ac)$ would not react with 4-chloro-p-fluoro-buty rophenone to give a p-fluorobuty rophenone $(I, R^{1} = H, R^{2} = (CH_{2})_{3} CO - \bigcirc F)$. On the basis that a reaction which fails on an <u>intermolecular</u> basis may succeed if effected <u>intramolecularly</u>, the amine $(I, R^{1} = R^{2} = H)^{5}$ was converted to the amide $(I, R^{1} = H, R^{2} = CO (CH_{2})_{3}CI)$,* m.172-6^o (89%) with 4-chlorobuty ryl chloride. The latter amide contains an <u>unactivated</u> chlorine atom disposed in an <u>intramolecular</u> situation; as predicted, treatment of the amide $(I, R^{1} = H, R^{2} = CO (CH_{2})_{3} CI)$ with one equivalent NaOEt in * All new compounds gave satisfactory spectroscopic and analytical data. EtOH at R.T. led to rapid formation of the lactam (II)^{*} m. 122-123[°] (52%), as the major product. Reaction of an ethereal suspension of the lactam (II) with 1.2 equivalents of p-fluorophenylmagnesium bromide at R.T. illustrated the enhanced reactivity of the carbonyl group in lactam (II) and gave, as the only product, the desired compound (I, R¹ = H, R² = (CH₂)₃ $CO \cdot \bigcirc F$, m. 182-3[°] (12%) separated from unchanged lactam (II) by preparative t.l.c. on SiO₂ with PII solvent ⁶.

Compounds prepared during this work were essentially inactive in general CNS screens.

REFERENCES

1 G.L. Hassert, J.W. Poutsiaka, D. Papandrianos, J.C. Burke and B.N. Craver, Toxicol. and Appl. Pharmacol., 1961, 3, 726;

H.L. Yale and K. Losee, J. Med. Chem., 1966, 9, 478.

2 H. Gehlen and M. Just, Ann., 1967, 703, 131.

3 H. Gehlen and M. Just, Ann., 1967, 703, 136.

4 N.C. Misra and K.K. Patraik, <u>J. Inst. Chemists</u> (India), 1972, <u>44</u>, 5, claim to have prepared a substance with this structure. We have repeated their work and shown that the product is recovered starting material, 2-amino-5-phenyl-1,3,4-oxadiazole.

5 F.L. Scott, T.M. Lambe and R.N. Butler, <u>Tetrahedron Letters</u>, 1971, 2669.

6 N.H. Andersen, J. Lipid Res., 1969, 10, 316.

Received, 28th March, 1977