SYNTHESIS OF OXAZOLES, IMIDAZOLES AND PYRROLES WITH THE USE OF MONO-SUBSTITUTED TOSYLMETHYL ISOCYANIDES 1

Okko Possel and Albert M. van Leusen*

Department of Organic Chemistry, The University,

Zernikelaan, Groningen, The Netherlands

Oxazoles, pyrroles and imidazoles are synthesized from mono-alkylated tosylmethyl isocyanides (TosCHRN=C) and aldehydes, Michael-acceptors or aldimines.

Tosylmethyl isocyanide (TosMIC, $\underline{1}$, R=H) has been found a useful synthon in organic chemistry. Base-induced reactions of TosMIC with unsaturated substrates such as ketones, aldehydes, imines and Michael acceptors lead to heterocyclic compounds (Eq 1). Elimination of p-toluenesulfinic acid (TsOH, possible for $R^{H}=H$) converts the initially formed azolines $\underline{2}$ to oxazoles, imidazoles or pyrroles (3). 3,4,5

X = 0, NR, CHY (for Y see Table II)

TABLE I. TosCHRN=C + R'-C
$$\stackrel{0}{H}$$
 $\stackrel{-\text{TsOH}}{\xrightarrow{R}}$ $\stackrel{R}{\xrightarrow{N}}$ $\stackrel{R}{\xrightarrow{N}}$

R	R'	Yield (%)	Conditions	bp or mp (°C)
Me	Ph	75	t-BuOK, MeOH, 40 ⁰	70-71 (0.7 mm) ^a
Ме	p-C1C ₆ H ₄	74	K ₂ CO ₃ , MeOH, reflux	78-80 (0.2 mm)
Me	2-furyl	64	t-BuOK, MeOH, 40 ⁰	57-58 (0.15 mm)
Et	Ph	82	K ₂ CO ₃ , MeOH, reflux	72-74 (0.6 mm) ^b
Et	p-C1C ₆ H ₄	73	t-BuOK, MeOH, 40 ⁰	97-98 (0.35 mm)
PhCH ₂	p-C1C6H4	81	K ₂ CO ₃ , MeOH, reflux	76.5-77.5
PhCH ₂	2-furyl	62	t-BuOK, MeOH, 40 ⁰	123-124 (0.2 mm)
PhCH ₂	2-thienyl	71	K ₂ CO ₃ , MeOH, reflux	162-165 (0.04 mm)

a. Lit. 8 bp 120-125°C (15 mm); b. Lit. 8 bp 124-128°C (11 mm).

TABLE II. TosCHRN=C + R'-CH=CH-Y
$$\xrightarrow{-\mathbf{T}\mathbf{SOH}} R \xrightarrow{R' Y} H$$

R۱	Υ	Yield (%)	Mp(°C)
Me	C00Me	71	146.5-148
Ph	PhC0	83	206-207.5
Ph	PhC0	83	168-169
Me	C00Me	81	134.5-135.5
Ph	C≘N	80	121-123
Ph	PhC0	78	209-210.5
	Me Ph Ph Me Ph	Me COOMe Ph PhCO Ph PhCO Me COOMe Ph CEN	Me C00Me 71 Ph PhC0 83 Ph PhC0 83 Me C00Me 81 Ph C≡N 80

Since the recent phase-transfer alkylation of TosMIC has made available a series of mono-substituted TosMIC-derivatives ($\underline{1}$, R = alkyl, benzyl, allyl), we were able now to synthesize a host of new azoles (Table I, II, III). For instance, 4-ethyl-5-phenyloxazole ($\underline{3}$, R = Et, R' = Ph, X = 0) was prepared in 82% yield by refluxing equimolar quantities of α -tosylpropyl isocyanide ($\underline{1}$, R = Et) and benzaldehyde for 1 hr with 1.5 equivalent of K_2CO_3 in MeOH. Other base-solvent systems such as sodium ethoxide in ethanol, or potassium t-butoxide in methanol or t-butanol were used with success also. Further examples are collected in Table I.

Occasionally, the intermediate 2-oxazolines ($\underline{2}$, X = 0) were isolated by carrying out the reaction at room temperature (K_2CO_3 in MeOH), which means that the elimination of TsOH is slow compared to the cycloaddition $\underline{2}$, X = 0, R = PhCH₂: R' = Ph, 83%, mp $106-107^0$; R' = p-ClC₆H₄, 74%, mp $106.5-108^0$; R' = p-MeOC₆H₄, 36%, mp $106-107^0$. These oxazolines were readily converted to the corresponding oxazoles $\underline{3}$ with K_2CO_3 in refluxing MeOH. Alternatively, 2-oxazolines were obtained under phase-transfer conditions (CH₂Cl₂, 30% NaOH, Bu₄NI), or with KOH and 18-Crown-6 in benzene.

2,3,4-Trisubstituted pyrroles (Table II) were synthesized in high yields from $\underline{1}$ and Michael acceptors with NaH in DMSO-Et₂0 at room temperature. These pyrroles are stable crystalline compounds. As an exception, no pyrrole was obtained from $\underline{1}$ (R = Me) and methyl acrylate, which polymerized under the conditions of the reaction.

Table III collects the results of the reaction of $\underline{1}$ with aldimines to 1,4,5-trisubstituted imidazoles. Here, a successful reaction appears to demand at least one electronegatively substituted (NO $_2$ or Cl) group in the aldimine, which is consistent with similar observations made with TosMIC itself. 5

R	R'	R''	Yield (%)	Conditions
Ме	Ph	p-0 ₂ NC ₆ H ₄	75	NaH/DME
Ме	p-02 ^{NC} 6 ^H 4	Ph	78	t-BuOK/DMSO
Me	Ph	Ph	_a	H.
PhCH ₂	p-0 ₂ NC ₆ H ₄	Ph	62	
PhCH ₂	p-C1C ₆ H ₄	Ph	68	NaH/DMSO
PhCH ₂	p-MeOC ₆ H ₄	Ph	_a	t-BuOK/DMSO
PhCH ₂	Ph	Me	_a	u
۷				and the second second

a. In the reaction mixture variable amounts of $R'C(CH_3)=NR''$ were found.

REFERENCES

- 1 This letter is part 15 of Chemistry of Sulfonylmethyl Isocyanides. Part 14, see A.M. van Leusen and J. Wildeman, Synthesis, submitted.
- 2 See, <u>e.g.</u> Fieser and Fieser, "Reagents for Organic Synthesis", Wiley Interscience, New York, 1974-5, Vol. <u>4</u>, 514, 272; <u>5</u>, 684.
- 3 A.M. van Leusen, B.E. Hoogenboom, and H. Siderius, Tetrahedron Lett., 1972, 2369.
- 4 A.M. van Leusen, H. Siderius, B.E. Hoogenboom, and D. van Leusen, Tetrahedron Lett., 1972, 5337.
- 5 A.M. van Leusen, J. Wildeman, O.H. Oldenziel, J. Org. Chem., 42,1153 (1977).
- 6 A.M. van Leusen, R.J. Bouma, and O. Possel, Tetrahedron Lett., 1975, 3487.
- 7 All new compounds are fully characterized by correct elemental analyses, and IR and NMR spectra.
- 8 H. Bredereck and R. Gompper, Chem. Ber., <u>87</u>, 700 (1954).

Received, 30th March, 1977