SYNTHESIS OF FUNCTIONALLY SUBSTITUTED 1-AZAADAMANTANES ANOMALOUS 1.3-DIOL FRAGMENTATION

W. Nico Speckamp* and Hans van Oosterhout,¹ Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands.

The synthesis of a number of 2- and 3-substituted 1-azaadamantanes, in which the substituent carries a functional group, is reported. Anomalous fragmentation of a 1,3-diol is described and discussed in terms of conformation.

As part of our continuing investigations of the properties of 1-azaadamantanes^{2,3} a synthesis for 2- and 3-substituted 1-azaadamantanes **1** became necessary. In view of earlier experiences the transformation and ring closure of suitable azabicyclo[3,3,1] nonanes was considered to be an attractive route.

Starting materials for all amino cage compounds were the aldehydes **a-c,** which in turn were synthesized from the corresponding alcohols³ in 80-85% yield using pyridinium chlorochromate.⁴ Reaction of 2a and 2b with methylene triphenylphosphorane and subsequent acid-catalyzed cyclisation was expected to furnish the **2-methyl-1-azaadamantanes.**

TWO equivalents of ylid were found to be necessary in order to obtain a good yield (85% in both cases) of the products $3a$ and $3b$:
use of only 1,25 equivalent decreased the yield to 55%. This

 (165)

effect is probably due to partial consumption of ylid by the tosylgroup; recent investigations have indicated a similar behaviour.⁵ The C₂-substituent of $3b$ was shown to occupy the endo position by ring closure in HCl/acetic acid under reflux conditions to the known compound $\frac{5}{5}$ in 79% yield; m.p. 76-80°C (dec); 1_{H-MMR} (CD₂OD) δ 1.48 (3H, d, N-CH-CH₂).

 5×50 $R = H$ $6X = H₂$ $R = OH$ $7 X=0$ $R = OH$

 $R^1R^2=O$ R^3 =OH R^4 =CH₂OH $10[°]$ $R^1R^2=O$ R^3 = H R^4 =CHO 11 R^4 =CH₂OH $\overline{12a}$ R'=R²=H R^2H **b** R^1R^2 ==SCH₂CH₂S- R^3 = H R^4 =CH₂OH 16 R^1R^2 =-SCH₂CH₂S- R^3 =H R^4 =H

2a $R^1 = R^2 = H$ $X = O$ \overline{b} R¹=R²=OCH₃ $X = O$ E R^1R^2 =-SCH₂CH₂S- $X=O$ $3a R¹=R²=H$ $X = CH₂$ \overline{b} R¹=R²=OCH₃ $X = CH₂$

 $8a R^1 \times R^2 = H$ R^3 =CHO R^3 =CHO $b R^1 = R^2 = OCH_3$ R^1R^2 =-SCH₂CH₂S- R^3 =CHO $9a R¹=R²=H$ R^3 =CH₂OH \overline{b} R¹=R²=OCH₃ R^3 =CH₂OH c R¹R²=-SCH₂CH₂S- R^3 =CH₂OH

 $\text{B}a \text{R}^{\text{I}}$ =R²=H \overline{b} R¹R²=-SCH₂CH₂S- R³CCH₂ 15 $R^1 = R^2 = R^3 = H$

 17

Figure 1

Treatment of the alkenes 3a and 3b with 1 equivalent of m-chloroperbenzoic acid gave directly the ringclosed products **6** and **1.** Data for $\underline{6}$: $m.p. 106-110°C$ (dec); ¹H-NMR (D₂O) δ 4.35 (1H, t, N-CH-CH₂OH); 4.1 and 3.7 (4H, 2x N-CH₂); 3.9 (2H, CH₂OH); 2.50 and 2.00 (9H, other cage protons). For 7: m.p. 80-85°C (dec); ¹H-NMR (D₂O) 4.40 (1H, 2 x d, N-CH-CH₂OH); 2.25 (2H, broad s, 2 x CH-C=O). A related case of olefin epoxidation with concomitant ring closure by attack of a neighbouring group leading to 2-azaadamantanes was recently reported.⁷

Condensation of the aldehydes $2a-c$ with formaldehyde under basic conditions in a two-layer system (water-dichloromethane) gave the aldols $8a-c$. The relative C_7 -configuration of the aldehyde and alcohol functions in $8b$ was shown to be as depicted by its ring closure to 10 in 72% yield; ¹H-NMR (D₂O) δ 3.55 and 3.25 (2H, CH₂OH); 2.50 (2H, broad s, 2 x CH-C=O); m.p. 155-159°C (dec). No trace of the bridegehead aldehyde 11 , corresponding to the reversed C_{η} -configuration in 8b, was found. Reduction of the aldols **8a-c** with NaBH_{$_A$} afforded the diols $9a-c$ in nearly quantitative yield.

To obtain the desired functionally C_2 -substituted 1-azaadamantane derivative $12a$, the diol $9a$ was submitted to cyclisation conditions similar to those used before in the preparation of 1-azaadamantane.^{2a} Quite unexpectedly, the only product isolated from
the reaction mixture (in 94% yield) was the acetate <u>13a</u>; m.p. - **1** 118-120°C; IR (KBr) 1710 cm⁻⁻ (C=O); ¹H-NMR (CDCl₃) δ 3.82 (2H, d, CH-CH₂OAc); 2.90 (1H, m, CH-CH₂OAc); 2.05 (3H, s, OOC-CH₃). Further evidence for this structure assignment was obtained from **³**an independent synthesis: the known acid 14 was converted with LiAlH₄ to the alcohol <u>15</u> (yield: 91%); acetylation of <u>15</u> with LiAlH₄ to the alcohol <u>15</u> (yield: 91%); acetylation of <u>15</u> with
acetic ^{anhy}dride gave a single product, identical with <u>13a</u>.

 (167)

When, however, the diol 9c was submitted to the same reaction conditions a 70% yield of the ringclosed product <u>12b</u> was obtained,
together with a small amount of the acetate <u>13b</u>. Data for <u>12b</u>: 1 H-NMR (C_ED_EN): 3.75 and 3.30 (4H, 2 x N-CH₂); 3.40 (s, 6H, -SCH₂CH₂-S and CH₂OH); 3.22 (s, 2H, N-CH₂); 2.40 and 1.98 (4H, 2 x cage -CH₂); $1-92$ (2H, $2 \times -C-H$ (cage)); m,p , $146-149^{\circ}C$.

The ¹H-NMR-spectrum could be interpreted by comparison with the spectrum of 16 , the thioketal of 1-azaadamantan-4-one.^{2b}

A possible explanation for this striking difference in behaviour might be the following: protonation of the endo-CH₂OH can lead to ringclosed product only if the N_T Ts group is in the vicinity of the intermediate carbenium intermediate; because of a diminished steric hindrance at C_{α} the distance between N-Ts and endo-CH₂OH is considerably larger in $9a$ than in $9c$, $9a$ most probably possessing a chair-boat conformation. In the latter molecule cyclisation **is** therefore hindered and fragmentation occurs as an undesired side reaction. **A** difference in conformation between 9a and 9c is also indicated by $13C-NMR$ analysis.⁸

Originally an explanation for the formation of the acetates $13a-b$ was formulated as follows⁹: fragmentation of the 1,3-diol would give the intermediate alkene 17, which could add acetic acid in an anti-Markovnikov manner, giving the acetate. This explanation, however, is incorrect as is discussed in the sequel.

 $18 R - H$ $R^2 = H$ R³=CH₂OAc ਦੇ ਖ਼ਤਮ R2=CH2CH R3=CH2CH $\overline{20}$ R^1 = tBu R^2 = CH₂OH R^3 = CH₂OH 21 R^i = H R^2 =CH2OAc R^3 =CH2OAc

22

 (168)

Although it proved not possible to prepare the alkene under a variety of conditions¹⁰, indirect information on the reaction course was obtained from the following experiments. Firstly, the reaction of methylenecyclohexane with acetic acidhydrochloric acid did not yield any of the expected acetate 18 . In view of the known sluggish behaviour of olefins in analogous type of reactions¹¹ this result is not surprising. Secondly and of even more significance reactions of **1,l bis(hydroxymethyl)cyclo**hexanes 19 and 20 gave similar fragmentation results. Treatment of 19 in HOAc-HCl gave mainly the acetate 18 (45% yield).¹² Analogous reaction of 20 gave a mixture of two acetate epimers $(ratio 1:1)$. Thus the two experiments establish the general character of the **1,3** diol fragmentation in cyclohexane-like compounds while the latter result seems to indicate the more or less equivalence of both hydroxymethyl groups. A plausible reaction path would be the following: after formation of a monoacetate it might be anticipated that the cyclic ortho-ester 22 arises as a transient intermediate.¹³ Next to a reversible process leading to starting material the irreversible proton transfer - presumably via a cyclic transition state - and concomitant expulsion of formaldehyde gives rise to generation of the acetate.¹⁴ This to the best of our knowledge unprecedented process is apparently a fairly general reaction for **1,3** diols if other pathways are not available and it also accounts for the formation of $13a$. In the latter example the Preferential loss of the *endo* hydroxymethyl presumably arises from the steric hindrance exerted by the sulfonamide substituent.

Finally, the compound 12a could be obtained from 12b by desulphurisation with Raney-Nickel, in 70% yield. Data: 1 H-NMR (CD₃OD) 6 **3.35** (2H, s, CK2)OH; 2.20-1.80 **(SH,** cage protons).

 (169)

REFERENCES

1 Part of the forthcoming thesis of H. van Oosterhout, University of Amsterdam.

2a W.N. Speckamp, J. Dijkink and H.O. Huisman, Chem.Comm., 1970, 197.

b A.W.J.D. Dekkers, J.W. Verhoeven and W.N. Speckamp, Tetrahedron, 1973, 29, 1691.

3 W.N. Speckamp, J. Dijkink, A.W.J.D. Dekkers and H.O. Huisman, Tetrahedron, 1971, 27, 3143.

4 E.J. COrey and J.W. Suggs, Tetrahedron Lett., 1975, 2647. 5 J.E. Stemke, A.R. Chamberlin and F.T., Bond, Tetrahedron Lett., 1976, 2947.

6 Treatment of aldehyde 2b with methylmagnesiumiodide gave $\frac{4}{3}$, which underwent cyclisation to *5.* C. van Lenten, unpublished results.

7 W.H. Staas and L.A. Spurlock, J.Org.Chem., 1974, 39, 3822. 8 W.N. Speckamp, Th. Reints Bok and H. van Oosterhout, to be published.

9a H.E. Zimmerman and J. English, J. Amer. Chem. Soc., 1954, 76, 2285. b E. Ghera, Tetrahedron Lett., 1970, 1539.

10 W.N. Speckamp and Th. Reints Eok, to be published in Tetrahedron. 10 W.N. Speckamp and Th. Reints Bok, to be published in <u>Te</u>
11 E. Arundale and L.A. Mikeska, <u>Chem.Rev</u>., 1952, 51, 505.
13 In addition to 18 diagotate 31 (outsination from unnea 11 E. Arundale and L.A. Mikeska, <u>Chem.Rev</u>., 1952, 51, 505.
12 In addition to 18, diacetate 21 (originating from unrearranged diol 19) was obtained in 35% yield.

13 J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; Mc Graw Hill Kogakusha, Ltd, Tokyo, 1968, p. 846. 14 Treatment of ortho-ester 23 (from 19 and triethylorthoacetate) with HOAc/HCl also gave the fragmentation product 18.

Received, 14th June, 1977

 (170)